SURPASS: (Statin Use and Risk Prediction of Atherosclerotic Cardiovascular Disease in minority Subgroups)
SURPASS:(少数亚组中他汀类药物的使用和动脉粥样硬化性心血管疾病的风险预测)
基本信息
- 批准号:10080751
- 负责人:
- 金额:$ 17.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAmericanAmerican Heart AssociationAreaAsiansAssessment toolAtherosclerosisBiometryCalibrationCaliforniaCardiologyCardiovascular DiseasesCardiovascular systemCause of DeathCholesterolChronic DiseaseClinicalClinical DataCodeComplexDataData ScienceDecision MakingDiagnosisDiscriminationDisease OutcomeElectronic Health RecordEnsureEpidemiologic MethodsEpidemiologyEquationEthnic groupEventFoundationsFundingFutureGoalsGuidelinesHawaiiHealthHealth Care CostsHealth Services ResearchHealth systemHealthcare SystemsHeterogeneityHispanicsHypersensitivityInterventionKnowledgeLaboratoriesLeadLifeMachine LearningMedicalMentorsMentorshipMexican AmericansMinorityMinority GroupsModelingModernizationNational Heart, Lung, and Blood InstituteNatural Language ProcessingNot Hispanic or LatinoOutcomePatientsPerformancePhysiciansPopulationPopulation HeterogeneityPreventionPrevention strategyPuerto RicanResearchResearch PersonnelResearch TrainingRiskRisk AssessmentRisk EstimateRisk FactorsSavingsScientistSouth AsianStable PopulationsStatistical Data InterpretationStatistical MethodsSubgroupTechniquesTechnologyTestingTrainingTraining ProgramsUnited StatesUniversitiesValidationVeterans Health AdministrationWomanWorkatherosclerosis riskbasebiomedical informaticscardiovascular disorder preventioncardiovascular disorder riskcardiovascular risk factorcareerclinical practicecohortcollegedisabilitydisparity reductionepidemiologic dataethnic minority populationevidence baseexperiencehealth differencehealth disparityhealth inequalitieshigh riskhigh risk populationi(19)improvedinnovationmachine learning algorithmmachine learning methodmenminority healthmortalityneural networkpatient subsetsprediction algorithmprevention servicepreventive interventionpublic health interventionracial and ethnicracial and ethnic disparitiesracial diversityracial minorityrandom forestrisk predictionrisk prediction modelside effectskillsstructured datasuccesssupervised learningsupport vector machinetreatment guidelinesunstructured data
项目摘要
PROJECT SUMMARY
Despite advances in technology, cardiovascular disease (CVD) remains the leading cause of death, disability,
and healthcare costs in the U.S. Yet, there is a tremendous gap in accurate cardiovascular risk prediction and
prevention, particularly in racial/ethnic minorities. Furthermore, there is significant heterogeneity in CVD risks
and outcomes for disaggregated Hispanic and Asian subgroups. The current cardiovascular risk assessment
tools have not been well-validated in these diverse populations, and it remains largely unknown why minority
patients are less likely to start and more likely to stop life-saving therapies. The overall goal of Dr. Rodriguez’s
K01 application is to address gaps in knowledge about CVD prediction and treatment in understudied
racial/ethnic minority populations. The proposed study will utilize the electronic health record (EHR) data from
an established NHLBI-funded cohort enriched with disaggregated Hispanic and Asian patients. Using this
cohort, Dr. Rodriguez will first test the ACC/AHA Pooled Cohort Equations in disaggregated Asian and
Hispanic subgroups using a large diverse mixed-payer cohort of 1,234,751 patients from two large healthcare
systems in Northern California and Hawaii. Secondly, she will build new CVD risk prediction models for diverse
patient subgroups using machine learning techniques. Finally, she will identify reasons for statin underuse and
discontinuation using natural language processing in the EHR. This study, which will evaluate existing data
from real-world clinical practice in a stable population, will inform future risk prediction models and cholesterol
treatment guidelines for diverse racial/ethnic groups. The proposal is aligned with the NHBLI’s strategic goals
to eliminate health disparities and inequities by leveraging epidemiology and data science to understand and
solve complex health problems. This proposal will also prepare Dr. Rodriguez to meet her long-term goal of
becoming a national leader and independent investigator in CVD prevention and minority health. The proposed
didactic and applied data science experiences, including training in advanced epidemiological methods and
machine learning, will prepare Dr. Rodriguez to apply her research to other areas of CVD prevention and
populations. This training program builds on the strengths of Stanford University in health services research,
epidemiology, and biomedical informatics. Her mentorship team, led by Dr. Latha Palaniappan, includes
experts in cardiovascular prevention and health services research (Dr. Heidenreich, co-mentor), applied
statistical analyses (Dr. Robert Tibshirani, advisor), machine learning in the EHR (Dr. Nigam Shah, advisor),
and chronic disease prediction and medical decision making (Dr. Michael Pignone, advisor). Dr. Rodriguez’s
team is committed to ensuring the success of the proposal as well as overseeing her advanced training in their
respective areas of expertise. The research and training plan proposed in this K01 application will develop Dr.
Rodriguez into a unique and highly-skilled clinician researcher ready to compete for R-level funding and launch
her independent research career.
!
项目摘要
尽管技术进步,心血管疾病(CVD)仍然是死亡,残疾,
然而,在准确的心血管风险预测方面存在巨大差距,
预防,特别是在种族/族裔少数群体中。此外,CVD风险存在显著异质性,
以及西班牙裔和亚裔亚组的分类结果。目前的心血管风险评估
工具尚未在这些不同的人群中得到很好的验证,并且在很大程度上仍然不清楚为什么少数人
患者开始接受挽救生命的治疗的可能性更小,而停止的可能性更大。罗德里格斯博士的总体目标是
K 01应用程序是为了解决有关CVD预测和治疗的知识不足,
种族/少数民族人口。拟议的研究将利用电子健康记录(EHR)数据,
一个由NHLBI资助的已建立的队列,其中包含了分类的西班牙裔和亚裔患者。使用此
Rodriguez博士将首先在分类的亚洲人群中测试ACC/AHA合并队列方程,
西班牙裔亚组使用来自两个大型医疗保健机构的1,234,751例患者的大型多元化混合支付者队列
北方加州和夏威夷的系统。其次,她将建立新的CVD风险预测模型,
使用机器学习技术的患者亚组。最后,她将确定他汀类药物使用不足的原因,
在EHR中使用自然语言处理。这项研究将评估现有的数据,
来自稳定人群的真实临床实践,将为未来的风险预测模型和胆固醇水平提供信息。
不同种族/民族群体的治疗指南。该提案符合NHBLI的战略目标
通过利用流行病学和数据科学来了解和
解决复杂的健康问题。这一提议也将为罗德里格斯博士实现她的长期目标做好准备,
成为CVD预防和少数民族健康的国家领导人和独立调查员。拟议
教学和应用数据科学经验,包括先进流行病学方法的培训,
机器学习,将准备罗德里格斯博士将她的研究应用到CVD预防的其他领域,
人口。该培训计划建立在斯坦福大学在卫生服务研究方面的优势基础上,
流行病学和生物医学信息学。她的导师团队由Latha Palaniappan博士领导,包括
心血管预防和卫生服务研究专家(Heidenreich博士,共同导师),应用
统计分析(Robert Tibshirani博士,顾问),EHR中的机器学习(Nigam Shah博士,顾问),
慢性疾病预测和医疗决策(Michael Pignone博士,顾问)。罗德里格斯医生
团队致力于确保提案的成功,并监督她在他们的高级培训
各自的专业领域。本K 01申请中提出的研究和培训计划将培养博士。
罗德里格斯成为一个独特的和高技能的临床研究人员准备竞争R级资金和推出
她的独立研究生涯
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatima Rodriguez其他文献
Fatima Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fatima Rodriguez', 18)}}的其他基金
SURPASS: (Statin Use and Risk Prediction of Atherosclerotic Cardiovascular Disease in minority Subgroups)
SURPASS:(少数亚组中他汀类药物的使用和动脉粥样硬化性心血管疾病的风险预测)
- 批准号:
10676853 - 财政年份:2019
- 资助金额:
$ 17.13万 - 项目类别:
SURPASS: (Statin Use and Risk Prediction of Atherosclerotic Cardiovascular Disease in minority Subgroups)
SURPASS:(少数亚组中他汀类药物的使用和动脉粥样硬化性心血管疾病的风险预测)
- 批准号:
10460110 - 财政年份:2019
- 资助金额:
$ 17.13万 - 项目类别:
SALUD: Study of Disaggregated Latinos in the US to Address Disparities
SALUD:针对美国分类拉丁裔群体的研究,以解决差异问题
- 批准号:
9115842 - 财政年份:2017
- 资助金额:
$ 17.13万 - 项目类别:
相似海外基金
Examining Social Determinants of Antiretroviral Adherence Trajectories among African American Adults with HIV
检查非洲裔美国成人艾滋病毒感染者抗逆转录病毒药物依从轨迹的社会决定因素
- 批准号:
10700611 - 财政年份:2023
- 资助金额:
$ 17.13万 - 项目类别:
Medication Adherence and Cardio-Metabolic Control Indicators among Adult American Indians Receiving Tribal Health Services
接受部落卫生服务的成年美洲印第安人的药物依从性和心脏代谢控制指标
- 批准号:
10419967 - 财政年份:2022
- 资助金额:
$ 17.13万 - 项目类别:
Medication Adherence and Cardio-Metabolic Control Indicators among Adult American Indians Receiving Tribal Health Services
接受部落卫生服务的成年美洲印第安人的药物依从性和心脏代谢控制指标
- 批准号:
10592441 - 财政年份:2022
- 资助金额:
$ 17.13万 - 项目类别:
Patient Centered Health Technology Medication Adherence Program for African American Hypertensives
以患者为中心的非裔美国人高血压健康技术药物依从计划
- 批准号:
9381307 - 财政年份:2017
- 资助金额:
$ 17.13万 - 项目类别:
Exploring Real-time ART Adherence Monitoring In Young African American MSM
探索年轻非裔美国 MSM 的实时 ART 依从性监测
- 批准号:
9198162 - 财政年份:2016
- 资助金额:
$ 17.13万 - 项目类别:
PrEP uptake, adherence & retention for African American MSM in Mississippi
PrEP 的摄取、依从性
- 批准号:
9141506 - 财政年份:2016
- 资助金额:
$ 17.13万 - 项目类别:
PrEP uptake, adherence & retention for African American MSM in Mississippi
PrEP 的摄取、依从性
- 批准号:
9348671 - 财政年份:2016
- 资助金额:
$ 17.13万 - 项目类别:
AMERICAN IMMUNIZATION REGISTRY ASSOC (AIRA) STANDARDS SUPPORT & DEV FOR IMMUNIZATION INFORMATION SYSTEMS TO INCREASE ADHERENCE TO NATL STANDARDS
美国免疫登记协会 (AIRA) 标准支持
- 批准号:
8902325 - 财政年份:2014
- 资助金额:
$ 17.13万 - 项目类别:
A smoking cessation/medication adherence intervention for African American MSM
针对非裔美国 MSM 的戒烟/药物依从性干预
- 批准号:
8773189 - 财政年份:2013
- 资助金额:
$ 17.13万 - 项目类别:
A smoking cessation/medication adherence intervention for African American MSM
针对非裔美国 MSM 的戒烟/药物依从性干预
- 批准号:
8529989 - 财政年份:2013
- 资助金额:
$ 17.13万 - 项目类别: