Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
基本信息
- 批准号:10116378
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgingAgonistAldehydesAlginatesAlzheimer&aposs DiseaseArchitectureAstrocytesAutomobile DrivingBiochemicalBiochemistryBiocompatible MaterialsBiologicalBiomechanicsCell Differentiation processCell Fate ControlCell MaintenanceCellsChromosome StructuresClinicalClinical TrialsComplexCuesDiseaseElastinEncapsulatedEngineeringEpigenetic ProcessExtracellular MatrixFamilyFibronectinsGelGene ProteinsHeterogeneityHumanHydrogelsIn VitroInjuryIntegrinsLaminsLigandsMaintenanceMeasuresMechanicsMesenchymal Stem CellsMorphologyN-CadherinNeuronsNuclearNuclear Pore ComplexOligodendrogliaPathologicPathway interactionsPhenotypePolyethylene GlycolsProcessProliferatingPropertyProtein EngineeringProtein FamilyProteinsRGD (sequence)RecombinantsRelaxationRoleSignal PathwaySignal TransductionSpinal cord injuryStressTherapeuticUndifferentiatedWorkadult stem cellbasebeta catenincell behaviorclinical efficacyclinically relevantcrosslinkdensitydesignenvironmental changeexperimental studyfunctional grouphistone modificationin vivoinduced pluripotent stem cellinhibitor/antagonistinsightintercellular communicationmechanotransductionmonolayernerve stem cellpeptidomimeticsregeneration potentialregenerativeself-renewalstemstem cell differentiationstem cell expansionstem cell nichestem cell proliferationstem cellsstemnesstoolviscoelasticity
项目摘要
PROJECT SUMMARY
Adult stem cells hold significant therapeutic potential to treat many diseases and injuries. For example, neural
progenitor cells (NPCs) are currently being investigated in over 20 clinical trials for use in a variety of indications.
Despite their significant clinical relevance, we currently lack the biological mechanistic understanding to
efficiently expand NPCs in vitro, even as neurospheres, while maintaining their undifferentiated, regenerative
stem phenotype. Recently, 3D matrices have emerged as a tool for stem cell expansion; unfortunately, once
encapsulated, NPCs commonly lose their stemness and ability to proliferate. Loss of NPC stemness is also
observed in vivo throughout the aging process and in pathological disease states causing diminished ability for
NPC self-renewal and biased differentiation. These phenotypic abnormalities are due in part to complex
environmental changes in the stem cell niche including altered extracellular matrix biochemical and
biomechanical properties. Therefore, we propose the use of a 3D in vitro hydrogel culture platform with controlled
matrix biochemistry and biomechanics that will enable the exploration of previously untestable hypotheses on
the mechanisms by which the surrounding cell microenvironment influences NPC maintenance, expansion, and
differentiation. We will use a family of protein-engineered hydrogels to understand the impact of the matrix
microenvironment on human iPSC-derived NPC (hNPC) phenotype. Specifically, we will study the role of matrix
biochemical and biomechanical properties on activation of the N-cadherin signaling pathway and downstream
hNPC phenotype. In Aim 1, we tune the biochemical cues presented within elastin-like protein (ELP) hydrogels
to display a N-cadherin-mimetic peptide. We hypothesize that cell engagement with the artificial N-cadherin will
result in downstream -catenin signaling, stemness maintenance, and enhanced symmetric proliferation
compared to neurosphere controls. In Aim 2, we tune the biomechanical cues presented by the recombinant
ELP hydrogels to enable dynamic matrix remodeling through viscoelastic stress relaxation. We hypothesize that
dynamic matrix remodeling will result in increased cell-cell contacts, induction of cellular-based N-cadherin
signaling, stemness maintenance, and enhanced symmetric proliferation compared to neurosphere controls. In
Aim 3, we evaluate the hypothesis that control of specific matrix material properties to tune N-cadherin
presentation and ELP hydrogel mechanics alters outside-in signal transduction that biases hNPC differentiation.
The biological mechanisms underlying this process will be explored via changes in nuclear architecture (lamin
expression and nuclear morphology) and epigenetics (histone modification and chromosomal organization).
Further mechanistic insight will be explored using inhibitors and agonists of key mechanotransduction signaling
pathways. Our engineered, modular hydrogels allow us to explore the mechanisms by which specific matrix cues
regulate hNPC stem maintenance and differentiation. Given the immense regenerative potential of these cells,
our findings will inform the design of a robust in vitro platform for the clinical expansion of hNPCs.
项目摘要
成体干细胞在治疗许多疾病和损伤方面具有重要的治疗潜力。例如神经
祖细胞(NPC)目前正在20多个临床试验中研究用于多种适应症。
尽管它们具有重要的临床意义,但我们目前缺乏对生物学机制的理解,
在体外有效地扩增NPC,甚至作为神经球,同时保持它们的未分化,再生,
茎表型最近,3D矩阵已经成为干细胞扩增的工具;不幸的是,一旦
由于被封装,NPC通常会失去它们的干性和增殖能力。NPC干性的丧失也是
在整个衰老过程中和病理性疾病状态中观察到的,
NPC自我更新和有偏分化。这些表型异常部分是由于复杂的
干细胞生态位的环境变化,包括细胞外基质生化改变,
生物力学性能因此,我们建议使用具有受控的细胞生长的3D体外水凝胶培养平台。
矩阵生物化学和生物力学,这将使以前无法验证的假设,
周围细胞微环境影响NPC维持、扩增和
分化我们将使用一个蛋白质工程水凝胶家族来了解基质的影响
微环境对人iPSC衍生的NPC(hNPC)表型的影响。具体来说,我们将研究矩阵的作用
生物化学和生物力学特性对N-钙粘蛋白信号传导通路和下游的活化的影响
hNPC表型。在目标1中,我们调整弹性蛋白样蛋白(ELP)水凝胶内呈现的生化信号
展示N-钙粘蛋白模拟肽。我们假设细胞与人工N-钙粘蛋白的结合将
导致下游β-连环蛋白信号传导、干性维持和增强的对称性增殖
与神经球对照组相比。在目标2中,我们调整重组体呈现的生物力学线索,
ELP水凝胶通过粘弹性应力松弛实现动态基质重塑。我们假设
动态基质重塑将导致细胞-细胞接触增加,诱导基于细胞的N-钙粘蛋白
信号传导、干性维持和增强的对称性增殖。在
目的3:我们评估了通过控制特定基质材料的性质来调节N-钙粘蛋白的假说
ELP水凝胶力学改变了偏向hNPC分化的由外向内的信号转导。
这一过程的生物学机制将通过核结构(核纤层蛋白)的变化来探讨。
表达和核形态学)和表观遗传学(组蛋白修饰和染色体组织)。
进一步的机制的见解将探讨使用抑制剂和激动剂的关键机械转导信号
途径。我们设计的模块化水凝胶使我们能够探索特定基质线索
调节hNPC茎的维持和分化。鉴于这些细胞的巨大再生潜力,
我们的发现将为hNPC的临床扩增提供可靠的体外平台的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah C Heilshorn其他文献
Sarah C Heilshorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah C Heilshorn', 18)}}的其他基金
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10732139 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10393001 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10190479 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10163255 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10396051 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10810271 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10605191 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Injectable Hydrogels to Protect Transplanted Cells from Hypoxia
可注射水凝胶保护移植细胞免受缺氧影响
- 批准号:
10377315 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
- 批准号:
10374785 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Engineered matrix microarrays to enhance the regenerative potential of iPSC-derived endothelial cells
工程化基质微阵列可增强 iPSC 衍生内皮细胞的再生潜力
- 批准号:
9576990 - 财政年份:2018
- 资助金额:
$ 34.51万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)