Engineered matrix microarrays to enhance the regenerative potential of iPSC-derived endothelial cells
工程化基质微阵列可增强 iPSC 衍生内皮细胞的再生潜力
基本信息
- 批准号:9576990
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesAffectAlgorithmsAmericanAnimal ModelBiochemicalBiocompatible MaterialsBiological AssayBiomechanicsBlood VesselsBlood flowCell SurvivalCell TransplantsCell physiologyCellsCharacteristicsChemistryClinicalComplexControl GroupsCuesCultured CellsEncapsulatedEndothelial CellsEndotheliumEngineeringExtracellular MatrixFamilyGangreneGelGenesGrowth FactorGuanosine Triphosphate PhosphohydrolasesHindlimbHistologicHistologyHumanHydrogelsIn VitroInjectableIntegrinsIschemiaKineticsLasersLeadLigand BindingLigandsLimb structureMediatingMolecular ProfilingMultivariate AnalysisNatural regenerationNitric OxidePECAM1 genePTK2 genePainPathway interactionsPatternPeripheral arterial diseasePhenotypePolyethylene GlycolsProcessPropertyProtein EngineeringProteinsRecombinantsRelaxationReporter GenesSalineSignal PathwaySignal TransductionSpectrum AnalysisStem cellsStressTestingTherapeuticTransplantationValidationVascular Endothelial CellVascularizationWorkangiogenesisbasebioluminescence imagingblood perfusioncell typecellular engineeringclinical efficacyclinical translationcombinatorialcrosslinkcytokinedesignformative assessmentimprovedin vivoinduced pluripotent stem celllimb amputationloss of functionmathematical analysismechanical propertiesmimeticsmouse modelnovelparacrinepre-clinicalregenerativeresponsescreeningtissue culturetranscriptome sequencingvascular endothelial dysfunctionviscoelasticity
项目摘要
ABSTRACT
Peripheral arterial disease (PAD) affects 8 million Americans and results in pain, gangrene, and limb
amputation. Current treatments are limited. We previously demonstrated that human induced pluripotent stem
cell-derived endothelial cells (iPSC-ECs) can improve blood perfusion in animal models of PAD; however,
their angiogenic potential remains limited. While many single-variable (univariate) matrix studies have
emphasized the importance of matrix-based cues for endothelial cell survival and function, few have focused
on understanding these processes in multivariate materials, which mimic the complexity of the natural
extracellular matrix (ECM). To address this limitation, we develop a combinatorial family of engineered
ECMs (eECMs) with independently tunable biochemical and biomechanical cues, including stiffness
and stress relaxation rate for high-throughput, matrix array studies of iPSC-EC survival and angiogenic
potential. In Aim 1, we test the hypothesis that multivariate analysis will lead to the identification of optimal
eECMs that enhance the regenerative capacity of iPSC-ECs and uncover previously unknown cross-talk
between distinct matrix cues. Preliminary work using matrix arrays of naturally derived ECM components
identified several previously unknown synergistic and antagonistic interactions between matrix cues.
We build on these exciting results by creating a new array platform for combinatorial screening of modular
eECMs designed for clinical translation. The eECM is an injectable hydrogel composed of recombinantly
engineered matrix-mimetic proteins and polyethylene glycol crosslinked using dynamic covalent
chemistry (DCC). Matrix biochemical cues are modified through protein engineering, while gel stiffness and
stress relaxation rate are independently tuned through the number and kinetics of crosslinks, respectively. An
in vitro array of 279 unique, combinatorial eECMs will be screened for iPSC-EC viability, phenotype, and
function. Multi-factorial mathematical analyses will rank the relative importance of each eECM variable, as well
as interaction effects that lead to synergistic enhancement. Results will be validated using conventional tissue
culture assays. In Aim 2, we test the hypothesis that iPSC-ECs on pro-angiogenic, multivariate eECMs will
have a distinctive, mechanistic signature. Integrin-mediated signaling pathways will be quantitatively assessed
to correlate observed angiogenic responses to mechanistic pathways, and confirmed through gain- and loss-
of-function studies. RNA sequencing will reveal new pathways and driver genes mediating the process,
ultimately demonstrating a molecular signature characteristic of pro-angiogenic effects of multivariate eECMs.
In Aim 3, we perform in vivo validation of the therapeutic potential of iPSC-ECs within the optimal eECM
in a murine model of PAD. Controls include cells seeded in eECM with univariate cell-binding ligands or non-
optimal mechanical properties, or cells delivered in saline. Cell survival will be tracked by bioluminescence
imaging; laser Doppler spectroscopy and histology will determine vascular regeneration.
摘要
外周动脉疾病(PAD)影响着800万美国人,导致疼痛、坏疽和肢体
截肢。目前的治疗方法有限。我们之前证明了人类诱导的多能干细胞
细胞衍生内皮细胞(IPSC-ECs)可以改善PAD动物模型的血液灌注量;然而,
它们的血管生成潜力仍然有限。虽然许多单变量(单变量)矩阵研究
强调了基于基质的信号对内皮细胞生存和功能的重要性,但很少有人关注
在模拟自然界复杂性的多变量材料中理解这些过程
细胞外基质(ECM)。为了解决这一局限性,我们开发了一种工程化的组合家族
具有可独立调节的生化和生物力学信号的细胞外基质(EECM),包括僵硬
和高通量的应力松弛速率,矩阵阵列研究IPSC-EC存活和血管生成
潜力。在目标1中,我们检验了多变量分析将导致最优识别的假设
增强IPSC-ECs再生能力并发现以前未知的串扰的eECM
在不同的矩阵提示之间。使用自然衍生的ECM组件的矩阵阵列的初步工作
确定了几个以前未知的矩阵线索之间的协同和拮抗相互作用。
我们在这些令人兴奋的结果的基础上,创建了一个新的阵列平台,用于模块化的组合筛选
EECM专为临床翻译而设计。EECM是一种可注射水凝胶,由重组
工程模拟基质蛋白与聚乙二醇的动态共价交联
化学(DCC)。基质生化线索通过蛋白质工程进行修改,而凝胶硬度和
应力松弛速率分别通过交联物的数目和动力学独立地进行调节。一个
279个独特的、组合的eECM的体外阵列将被筛选以检测IPSC-EC的活性、表型和
功能。多因素数学分析也将对每个eECM变量的相对重要性进行排名
作为导致协同增强的相互作用效应。结果将使用常规组织进行验证
培养化验。在目标2中,我们测试了IPSC-ECs在促血管生成的多变量eECM上将
有一个独特的、机械的签名。整合素介导的信号通路将被定量评估
将观察到的血管生成反应与机械性途径相关联,并通过得失证实-
功能障碍研究。RNA测序将揭示参与这一过程的新途径和驱动基因,
最终展示了多变量eECM促血管生成作用的分子特征。
在目标3中,我们在最优的eECM中对IPSC-ECs的治疗潜力进行了体内验证
在PAD的小鼠模型中。对照包括接种于eECM中的带有单变量细胞结合配体的细胞或非
最佳机械性能,或在生理盐水中输送细胞。细胞存活将通过生物发光来跟踪
成像:激光多谱勒光谱和组织学将决定血管再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah C Heilshorn其他文献
Sarah C Heilshorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah C Heilshorn', 18)}}的其他基金
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10732139 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10393001 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10190479 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10163255 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10396051 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10810271 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10605191 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Injectable Hydrogels to Protect Transplanted Cells from Hypoxia
可注射水凝胶保护移植细胞免受缺氧影响
- 批准号:
10377315 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
- 批准号:
10116378 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
- 批准号:
10374785 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Investment Accelerator














{{item.name}}会员




