Cardiac Ion Channel Regulation
心脏离子通道调节
基本信息
- 批准号:10085071
- 负责人:
- 金额:$ 51.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-06 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAlternative SplicingArrhythmiaAutomobile DrivingBindingBrainC-terminalCalciumCardiacCardiac MyocytesCaviaCell NucleusCell membraneCell physiologyCell surfaceCessation of lifeChronic stressCytoplasmCytoplasmic OrganelleDataDeveloped CountriesDevelopmentDimensionsDiseaseDisease ProgressionDissectionEF Hand MotifsEventFamilyFundingGenesGeneticGenetic TranscriptionHeartHeart DiseasesHeart HypertrophyHeart failureHypertrophyImpairmentImportinsInvestigationIon ChannelKv channel-interacting protein 1Kv4 channelLeadLocationMicroRNAsMorbidity - disease rateMuscle CellsMyocardiumN-terminalNamesNuclear Pore ComplexOutcomePalmitic Acylation SitePathogenesisPathway interactionsPotassiumPotassium ChannelPredispositionProtein IsoformsProteinsRNA SplicingRegulationRegulatory ElementRoleRyR2SourceStressTranscription RepressorVariantVentricularWorkacute stressgene repressionheart functionindium arsenideinsightmortalitynovelpalmitoylationpresenilinpreservationprogramsprotein distributionprotein expressionprotein functionprotein protein interactiontraffickingvoltage
项目摘要
Project Summary
Cardiac arrhythmias are a leading cause of morbidity and mortality in developed nations, resulting in more than
300,000 deaths per year in the U.S. alone. These arrhythmias are frequently associated with acquired heart
diseases, notably cardiac hypertrophy and heart failure (HF), where the dysregulation of a host of ion channels
and transporters is observed. One of the most consistent changes frequently associated with compromised
repolarization, is selective reduction in the transient outward potassium current Ito. Ito is generated primarily by
the voltage-gated potassium (Kv) channel, Kv4, and its interacting auxiliary subunit known as K Channel
Interacting Protein 2 (KChIP2). Under hypertrophy and HF there is consistent loss of KChIP2, thought to cause
the reduction in Ito. Intriguingly, the loss in KChIP2 expression has been observed to be one of the earliest and
most consistent remodeling events in HF development. The commonality and early state of this remodeling
begins to suggest KChIP2 loss might not just be one of the casualties during disease progression, but may
represent an initiating factor driving pathogenesis. Emerging evidence suggests KChIP2 may not be limited to
cell surface regulation of Kv4. Indeed, since its original discovery, there has been an expansion in the roles of
KChIP2 in cardiac ion channel function including modulation of Na, L-type Ca, and Kv1.5 channels. In total, there
are four KChIP genes (KChIP1-4) with many alternatively spliced isoforms. Interestingly, KChIP3 (found in the
brain), calsenilin and DREAM are encoded by a single gene. These names are the result of three independent
discoveries due to different roles: modulation of Kv channels, regulation of the protein presenilin, and critically,
calcium-sensitive transcriptional repression through binding to DRE (downstream regulatory element)
sequences of genes. While KChIP2 is the only isoform found in the heart, given the homology it shares with
KChIP3, it led us to hypothesize that KChIP2 could also perform multiple functions. Indeed, during the previous
funding period, we identified a significantly expanded importance of KChIP2 in the heart. We demonstrated novel
functions for KChIP2 in regulating calcium currents and RyR2. Importantly, we demonstrated a novel role for
KChIP2 where it could regulate the genes at the source of INa and Ito by acting, much like KChIP3/DREAM, as a
transcriptional repressor targeting a family of microRNAs. In this renewal, we will elucidate in aim 1 the role of
KChIP2 as a transcriptional repressor. In aim 2, we will determine the control mechanisms for KChIP2 trafficking
between cytoplasm and nucleus. And in aim 3, we will elucidate how chronic stress affects KChIP2 distribution
and function in cardiac myocytes. Collectively, the outcomes of these investigations will demonstrate that KChIP2
actions are dramatically more expansive than modulation of Kv4 channels alone, suggesting that these other
KChIP2 functions can be potent contributors to adverse remodeling events characterized in the diseased heart.
项目摘要
在发达国家,心律失常是发病率和死亡率的主要原因,导致超过
仅在美国每年就有30万人死亡。这些心律失常常常与获得性心脏有关。
疾病,特别是心肌肥厚和心力衰竭(HF),其中宿主离子通道调节失调
并观察到了转运体。最一致的变化之一,经常与妥协相关
复极化,是选择性地降低瞬时外向钾电流Ito。ITO主要由以下方式生成
电压门控钾(Kv)通道Kv4及其相互作用的辅助亚基K通道
相互作用蛋白2(KChIP2)。在肥厚和心衰的情况下,KChIP2持续丢失,被认为是导致
伊藤忠的减少。有趣的是,KChIP2的表达缺失被观察到是最早和
心力衰竭发展中最一致的重塑事件。这种改造的共性和早期状态
开始提示KChIP2的丢失可能不仅是疾病进展过程中的伤亡之一,而且可能
代表了驱动发病机制的启动因素。新出现的证据表明,KChIP2可能不仅限于
Kv4的细胞表面调控。事实上,自从它最初被发现以来,它的作用已经扩大了
KChIP2在心脏离子通道中的作用包括对钠通道、L型钙通道和Kv1.5通道的调制。总体而言,
有四个KChIP基因(KChIP1-4),有许多选择性剪接的异构体。有趣的是,KChIP3(位于
大脑)、钙化蛋白和梦都是由一个基因编码的。这些名字是由三个独立的
由于不同角色的发现:调节Kv通道,调节蛋白质早老素,以及关键的,
与DRE(下游调控元件)结合对钙敏感的转录抑制
基因序列。虽然KChIP2是在心脏中发现的唯一异构体,但考虑到它与
KChIP3,这使我们假设KChIP2也可以执行多种功能。事实上,在上一次
在资助期间,我们发现KChIP2在心脏中的重要性显著扩大。我们展示了一种新颖的
KChIP2在调节钙电流和RyR2中的作用重要的是,我们展示了一个新的角色
在KChIP2中,它可以通过与KChIP3/Dream一样的作用来调节Ina和Ito来源的基因,作为一个
以microRNA家族为靶标的转录抑制因子。在这次更新中,我们将在目标1中阐明
KChIP2作为转录抑制因子。在目标2中,我们将确定KChIP2贩运的控制机制
在细胞质和细胞核之间。在目标3中,我们将阐明慢性应激如何影响KChIP2分布
并在心肌细胞中发挥作用。总体而言,这些调查的结果将表明,KChIP2
动作比单独调制Kv4频道要广泛得多,这表明这些其他
KChIP2功能可能是疾病心脏中不良重塑事件的有力贡献者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabelle Deschenes其他文献
Isabelle Deschenes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabelle Deschenes', 18)}}的其他基金
FASEB's The Ion Channel Regulation Conference
FASEB 离子通道调节会议
- 批准号:
10231849 - 财政年份:2021
- 资助金额:
$ 51.96万 - 项目类别:
Biophysical Modulation of Cardiac Ion Channels by MicroRNA
MicroRNA 对心脏离子通道的生物物理调节
- 批准号:
10660561 - 财政年份:2017
- 资助金额:
$ 51.96万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
9126030 - 财政年份:2016
- 资助金额:
$ 51.96万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
10084059 - 财政年份:2016
- 资助金额:
$ 51.96万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
9237315 - 财政年份:2016
- 资助金额:
$ 51.96万 - 项目类别:
Genotype-Phenotype Discordance in Long QT Syndrome
长 QT 综合征的基因型-表型不一致
- 批准号:
8766406 - 财政年份:2014
- 资助金额:
$ 51.96万 - 项目类别:
Genotype-Phenotype Discordance in Long QT Syndrome
长 QT 综合征的基因型-表型不一致
- 批准号:
8897439 - 财政年份:2014
- 资助金额:
$ 51.96万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Operating Grants
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 51.96万 - 项目类别:
Research Grants