Sodium Channels and Cardiac Arrhythmias
钠通道和心律失常
基本信息
- 批准号:10458504
- 负责人:
- 金额:$ 53.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdrenergic AgentsAdultArrhythmiaAtrial FibrillationBindingBiophysicsBrugada syndromeCRISPR/Cas technologyCalorimetryCardiacCardiac MyocytesCessation of lifeComplexCoupledCouplingCryoelectron MicroscopyCyclic AMP-Dependent Protein KinasesDefectDeveloped CountriesDimerizationDiseaseDominant-Negative MutationEnsureFluorescence Resonance Energy TransferFundingGenesGenetic PolymorphismHeartHeart DiseasesHeart failureImaging TechniquesInheritedIonsLeadLinkLong QT SyndromeMass Spectrum AnalysisMediatingModificationMorbidity - disease rateMuscle CellsMutationNeuronsPathologyPatternPhosphorylationPhysiologyPost-Translational Protein ProcessingProteinsRattusReportingRoleSerineSick Sinus SyndromeSkeletal MuscleSodiumSodium ChannelStructureSyndromeSystemTechniquesTissuesTitrationsVentricularbiophysical analysisdimergene cloninginduced pluripotent stem cellmonomermortalitymutantnovel strategiespatch clamppreventsingle moleculestoichiometrytraffickingvoltage
项目摘要
Project Summary
Evolutionarily, voltage-gated sodium channels are fundamental to the organization of most complex excitable
tissues where they are crucial to ensure the sharp initiation dynamics and proper propagation of the action
potential and are at the center of cellular excitability. Hence, mutations in voltage-gated sodium channel genes
have been linked to a whole host of diseases including cardiac arrhythmias. Modification in Na+ current (INa) is
known to contribute to both cardiac arrhythmias from acquired heart diseases and inherited cardiac arrhythmias.
Since the original cloning of the genes encoding for voltage-gated sodium channels and the recording of its
function by patch-clamping over 30 years ago, the -subunit of the sodium channel was thought to be a
monomer. However, during the previous funding period our studies of mutations found in SCN5A linked to
several different arrhythmic syndromes led us to question the traditional idea of the sodium channel forming a
monomer. In fact, we and others have shown that several Brugada Syndrome (BrS) mutations display dominant-
negative effects (DN-effect), which could only be attributed to interaction between -subunits within multimeric
complexes. Similarly, we have shown that the defects of several BrS or LQT3 SCN5A mutations could be
rescued by different SCN5A polymorphisms expressed on a separate construct, again supporting the idea of an
subunit interaction. Finally, we also reported the presence of atypical BrS mutations that do not present
defects when expressed alone but lead to reduced current amplitudes when co-expressed with WT, again
supporting an interaction of the subunits. Therefore, multiple lines of evidence challenged the conventional
wisdom that sodium channels exist in complexes containing a single subunit. We thus sought to investigate
the stoichiometry of sodium channel subunits. We demonstrated using different experimental approaches that
sodium channels form functional dimers. We also identified the region modulating the dimerization and found
that this physical dimerization results in coupled gating of the sodium channels and involves 14-3-3. Our findings
shifted conventional paradigms in regards to sodium channel assembly, structure, and function. Our overall
hypothesis for this renewal is that the physical dimerization of sodium channels leads to dimerization-dependent
channel activity (i.e. channel gating and trafficking) with implication for normal physiology and for cardiac
pathologies linked to dysregulation of the sodium current. In aim 1 we will study the biophysical coupling and
determine if this is dynamically modulated. In aim 2 we will explore trafficking of the sodium channel and the
involvement of 14-3-3. Finally in aim 3 we will determine the role of posttranslational modification in the
dimerization of sodium channels. Understanding of the mechanisms involved in channel dimerization, trafficking
and functional biophysical coupling could open the door to new approaches and targets to treat and/or prevent
sodium channelopathies and dysregulation of INa in heart failure.
项目摘要
在进化上,电压门控钠通道是组织最复杂的可兴奋的细胞的基础。
组织,它们对于确保动作的急剧启动动力学和适当传播至关重要
潜力并且处于细胞兴奋性的中心。因此,电压门控钠通道基因的突变
与包括心律失常在内的一系列疾病有关。Na+电流(INa)的改变是
已知其导致后天性心脏病和遗传性心律失常。
自从最初克隆了编码电压门控钠通道的基因并记录了它的变化以来,
30多年前,钠通道的β-亚基被认为是一种
单体的然而,在上一个资助期间,我们对SCN 5A中发现的突变的研究与
几种不同的糖尿病综合征使我们质疑钠通道形成一个钠通道的传统观念。
单体的事实上,我们和其他人已经证明,几个Brugada综合征(BrS)突变显示显性-
负效应(DN-效应),这只能归因于多聚体中的β-亚基之间的相互作用,
配合物类似地,我们已经表明,几种BrS或LQT 3 SCN 5A突变的缺陷可能是
通过在单独的构建体上表达的不同SCN 5A多态性来拯救,再次支持了
亚基相互作用。最后,我们还报告了非典型BrS突变的存在,
当单独表达时导致缺陷,但当与WT共表达时导致电流幅度降低,
从而支持所述多核苷酸亚基之间的相互作用。因此,多种证据挑战了传统的
钠离子通道存在于含有一个单亚基的复合物中。因此,我们试图调查
钠离子通道钙离子亚基的化学计量。我们用不同的实验方法证明,
钠通道形成功能性二聚体。我们还确定了调节二聚化的区域,
这种物理二聚化导致钠通道的偶联门控,并涉及14-3-3。我们的研究结果
改变了钠通道组装、结构和功能方面的传统范式。我们的整体
这种更新的假设是钠通道的物理二聚化导致二聚化依赖性的
通道活动(即通道门控和运输)与正常生理学和心脏
与钠电流失调有关的病理学。在目标1中,我们将研究生物物理耦合,
确定这是否是动态调制的。在aim 2中,我们将探索钠通道和
14-3-3的参与最后,在目标3中,我们将确定翻译后修饰在
钠通道的二聚化。了解通道二聚化、贩运所涉及的机制
和功能性生物物理耦合可以为治疗和/或预防的新方法和目标打开大门
心力衰竭中钠通道病和INa调节异常。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis of human Nav1.5 gating mechanisms.
人类 Nav1.5 门控机制的结构基础。
- DOI:10.21203/rs.3.rs-3985999/v1
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Chinthalapudi,Krishna;Biswas,Rupam;López-Serrano,Ana;Huang,Hsiang-Ling;Ramirez-Navarro,Angelina;Grandinetti,Giovanna;Heissler,Sarah;Deschênes,Isabelle
- 通讯作者:Deschênes,Isabelle
Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway.
间充质干细胞通过激活PI3K介导的硝基 - 雷克斯途径来抑制心脏替代品。
- DOI:10.1016/j.yjmcc.2016.05.014
- 发表时间:2016-09
- 期刊:
- 影响因子:5
- 作者:Sattayaprasert, Prasongchai;Nassal, Drew M.;Wan, Xiaoping;Deschenes, Isabelle;Laurita, Kenneth R.
- 通讯作者:Laurita, Kenneth R.
A Heart Failure-Associated SCN5A Splice Variant Leads to a Reduction in Sodium Current Through Coupled-Gating With the Wild-Type Channel.
与心力衰竭相关的SCN5A剪接变体导致通过与野生型通道结合门控钠电流的降低。
- DOI:10.3389/fphys.2021.661429
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Zheng Y;Wan X;Yang D;Ramirez-Navarro A;Liu H;Fu JD;Deschênes I
- 通讯作者:Deschênes I
MicroRNA Biophysically Modulates Cardiac Action Potential by Direct Binding to Ion Channel.
- DOI:10.1161/circulationaha.120.050098
- 发表时间:2021-04-20
- 期刊:
- 影响因子:37.8
- 作者:Yang D;Wan X;Dennis AT;Bektik E;Wang Z;Costa MGS;Fagnen C;Vénien-Bryan C;Xu X;Gratz DH;Hund TJ;Mohler PJ;Laurita KR;Deschênes I;Fu JD
- 通讯作者:Fu JD
In aging hearts β-adrenergic stimulation can lead to a decrease, instead of an increase, in the slow delayed rectifier current: A new risk factor for aging-related arrhythmia?
在衰老的心脏中,β-肾上腺素能刺激可以导致缓慢延迟整流电流的减少而不是增加:与衰老相关的心律失常的新危险因素?
- DOI:10.1016/j.hrthm.2021.09.020
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Tseng,Gea-Ny
- 通讯作者:Tseng,Gea-Ny
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabelle Deschenes其他文献
Isabelle Deschenes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabelle Deschenes', 18)}}的其他基金
FASEB's The Ion Channel Regulation Conference
FASEB 离子通道调节会议
- 批准号:
10231849 - 财政年份:2021
- 资助金额:
$ 53.53万 - 项目类别:
Biophysical Modulation of Cardiac Ion Channels by MicroRNA
MicroRNA 对心脏离子通道的生物物理调节
- 批准号:
10660561 - 财政年份:2017
- 资助金额:
$ 53.53万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
9126030 - 财政年份:2016
- 资助金额:
$ 53.53万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
10084059 - 财政年份:2016
- 资助金额:
$ 53.53万 - 项目类别:
Transcriptional Regulation of Ion Channels in Heart Failure and Arrhythmias
心力衰竭和心律失常中离子通道的转录调节
- 批准号:
9237315 - 财政年份:2016
- 资助金额:
$ 53.53万 - 项目类别:
Genotype-Phenotype Discordance in Long QT Syndrome
长 QT 综合征的基因型-表型不一致
- 批准号:
8766406 - 财政年份:2014
- 资助金额:
$ 53.53万 - 项目类别:
Genotype-Phenotype Discordance in Long QT Syndrome
长 QT 综合征的基因型-表型不一致
- 批准号:
8897439 - 财政年份:2014
- 资助金额:
$ 53.53万 - 项目类别:
相似海外基金
Preclinical test for the efficacy of adrenergic agents in treatment of AD
肾上腺素能药物治疗AD疗效的临床前试验
- 批准号:
8358448 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Preclinical test for the efficacy of adrenergic agents in treatment of AD
肾上腺素能药物治疗AD疗效的临床前试验
- 批准号:
8517552 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7952159 - 财政年份:2009
- 资助金额:
$ 53.53万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7952152 - 财政年份:2009
- 资助金额:
$ 53.53万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7719194 - 财政年份:2008
- 资助金额:
$ 53.53万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7605416 - 财政年份:2007
- 资助金额:
$ 53.53万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7605425 - 财政年份:2007
- 资助金额:
$ 53.53万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7378753 - 财政年份:2006
- 资助金额:
$ 53.53万 - 项目类别:
Adrenergic Agents for Methamphetamine: Outpatient Trials
甲基苯丙胺肾上腺素药物:门诊试验
- 批准号:
6825160 - 财政年份:2004
- 资助金额:
$ 53.53万 - 项目类别:
ADRENERGIC AGENTS FOR CARDIOPULMONARY RESUSCITATION
用于心肺复苏的肾上腺素能药物
- 批准号:
2702283 - 财政年份:1997
- 资助金额:
$ 53.53万 - 项目类别: