MULTISCALE MODELS OF NEURAL POPULATION CONTROL IN SPINAL CORD
脊髓神经群控制的多尺度模型
基本信息
- 批准号:10221982
- 负责人:
- 金额:$ 16.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-23 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing sophistication of brain recording technology has not been matched by a similarly
sophisticated mathematical approach that permits modeling and prediction of the relation between
behavior and the activity of populations of cells deep within the nervous system. This is particularly true
for motor systems, where the primary goal is control of the dynamics of the environment. Our goal is to
create multiscale models of motor components of the spinal cord that can link at least four scales: (1)
individual neuron firing, (2) local neural population activity, (3) topographic maps of activity across the
spinal cord, and (4) behavior. We propose to use the spinalized frog as our testbed, because the
biomechanics are well understood, proprioceptive feedback is simplified, the cord can be studied in
isolation from cortical control, and repeatable complex movements can be generated in the absence of
cortical control.
We will use and further develop a new mathematical framework based upon superposition of stochastic
dynamic operators. It is appropriate to consider neural activity as causing a modification of the system
dynamics, so that the resulting dynamics (including movement, compliance, and oscillatory behavior)
achieve a desired result. The new framework allows us to model the response to dynamic
environments, compliant control, reflex behavior, the effect of single spikes, and the combined effect of
multiple neurons in a population. We can examine oscillatory activity (such as found in the central
pattern generator (CPG) for locomotion) and the role of proprioceptive feedback. Because this theory
operates at the level of single spikes and all neural representations are local and can use local learning
rules, it provides a much closer link to the actual biological computations and could provide insight into
the mechanisms used by the spinal cord to generate complex and varied movement.
To test our understanding of the behavior of populations of neurons in the intermediate layers of spinal
cord, we will (1) read out the dynamics of ongoing movement including perturbation responses and
compliance, (2) modify the dynamics of ongoing movement, (3) create topographic maps showing the
distribution of control functions across the cord.
These experiments will allow us to understand control by neural populations of the dynamics of
movement in a detailed way that links the neural scale to the population scale to the motor behavioral
scale. The mathematical framework provides a new model for understanding the function of
populations of neurons and predicting their effect on behavior. It also provides a quantitative model
that allows the prediction of the effect of modification of firing or injury on behavior. Finally, it will
provide the basis for new treatments for spinal cord injury by giving an understanding of functional
electrical stimulation that can be used not just to generate forces in target muscles, but can be used to
generate smooth compliant control of dynamics in the way naturally used by the body.
越来越复杂的大脑记录技术还没有一个类似的
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input.
由于相关感觉输入而导致局灶性手肌张力障碍的运动溢出的神经形态模型。
- DOI:10.1088/1741-2560/13/5/055001
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Sohn Won J;Niu Chuanxin M;Sanger Terence D
- 通讯作者:Sanger Terence D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terence D Sanger其他文献
Terence D Sanger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terence D Sanger', 18)}}的其他基金
High-speed simulation of developmental motor disorders
发育性运动障碍的高速模拟
- 批准号:
8018951 - 财政年份:2010
- 资助金额:
$ 16.83万 - 项目类别:
High-speed simulation of developmental motor disorders
发育性运动障碍的高速模拟
- 批准号:
7845875 - 财政年份:2010
- 资助金额:
$ 16.83万 - 项目类别:
High-speed simulation of developmental motor disorders
发育性运动障碍的高速模拟
- 批准号:
8204881 - 财政年份:2010
- 资助金额:
$ 16.83万 - 项目类别:
High-speed simulation of developmental motor disorders
发育性运动障碍的高速模拟
- 批准号:
8386649 - 财政年份:2010
- 资助金额:
$ 16.83万 - 项目类别:
Optimizing communication devices for children with dyskinetic cerebral palsy
优化运动障碍性脑瘫儿童的通讯设备
- 批准号:
8255557 - 财政年份:2009
- 资助金额:
$ 16.83万 - 项目类别:
Optimizing communication devices for children with dyskinetic cerebral palsy
优化运动障碍性脑瘫儿童的通讯设备
- 批准号:
8064692 - 财政年份:2009
- 资助金额:
$ 16.83万 - 项目类别:
Optimizing communication devices for children with dyskinetic cerebral palsy
优化运动障碍性脑瘫儿童的通讯设备
- 批准号:
8011764 - 财政年份:2009
- 资助金额:
$ 16.83万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
- 批准号:
2338833 - 财政年份:2024
- 资助金额:
$ 16.83万 - 项目类别:
Continuing Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neural basis of gambling addiction and establishment of the treatment for translational models
赌博成瘾的神经基础及转化模型治疗的建立
- 批准号:
22KJ1769 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2311468 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2311469 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Continuing Grant