Dynamics and Causal Functions of Large-Scale Cortical and Subcortical Networks

大规模皮层和皮层下网络的动力学和因果函数

基本信息

  • 批准号:
    10291321
  • 负责人:
  • 金额:
    $ 70.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Improved understanding of the brain processes underlying normal and abnormal function is necessary for devising better ways to diagnose, alleviate, or cure neurological or psychiatric disorders. It is clear that even for simple behaviors, such processes depend on interactions among multiple brain regions. However, these interactions themselves are less well understood. This inadequate understanding of inter-regional interactions impedes the generation of substantive models of brain functions and the new diagnostic or therapeutic possibilities that such models could introduce. These deficiencies reflect in part the limitations of the widely used imaging modalities. Detailed analysis of the operation of a network of brain regions requires comprehensive coverage, high spatial resolution, and high temporal resolution. However, existing techniques either lack high temporal resolution, high spatial resolution, or comprehensive coverage. Thus, they cannot track the spatial and temporal progression of inter-regional interactions. Intracranial recordings using electrocorticographic (ECoG) electrodes placed on the brain surface, or depth electrodes (stereoencephalography; SEEG) placed in regions and sulcal depths not accessible with ECoG, can provide wide coverage and high temporal and spatial resolution. Furthermore, electrical stimulation through these electrodes can assess causal roles and inter-regional connections. However, because intracranial electrodes are only available in patients awaiting brain surgery, intracranial studies are typically limited to small numbers of subjects with variable electrode coverage. In the research proposed here, our established and highly experienced ECoG/SEEG consortium will engage in a formalized research program that seeks to begin to reveal the detailed connectivity, causality, and dynamic neural processes supporting human speech perception. Research to achieve our two project aims will take full advantage of the opportunities afforded by intracranial electrodes. The proposed work will make use of an established interdisciplinary intracranial consortium, with four data collection sites providing access to dozens of subjects per year. The consortium will apply itself to answering new questions about dynamic inter-areal function underlying speech perception. If successful, the proposed work should not only add new neuroscientific understanding, but also formally validate a consortium structure as a model for intracranial research.
项目摘要/摘要 改善对正常和异常功能背后的大脑过程的理解是必要的 设计更好的方法来诊断、缓解或治愈神经或精神疾病。很明显,即使是 对于简单的行为,这样的过程取决于多个大脑区域之间的相互作用。然而,这些 人们对互动本身的了解较少。这种对区域间相互作用的不充分理解 阻碍大脑功能的实质性模型的产生和新的诊断或治疗的可能性 这样的模型可以引入。 这些缺陷在一定程度上反映了广泛使用的成像方式的局限性。(fifl)详细分析了 大脑区域网络的运行需要全面的覆盖、高空间分辨率和高 时间分辨率。然而,现有技术要么缺乏高时间分辨率,要么缺乏高空间分辨率, 或全面覆盖。因此,它们无法跟踪区域间的空间和时间进程 互动。使用放置在大脑表面的皮层脑电(ECoG)电极进行的颅内记录,或 放置在ECoG无法触及的区域和沟深处的深度电极(立体脑成像;SEEG), 可以提供广泛的覆盖范围和高的时间和空间分辨率。此外,通过电刺激 这些电极可以评估因果作用和区域间的联系。然而,因为颅内电极 仅适用于等待脑部手术的患者,颅内研究通常仅限于少量 具有可变电极覆盖率的受试者。在这里提出的研究中,我们成熟的和经验丰富的 ECOG/SEEG联盟将参与一项正式的研究计划,寻求开始揭示详细的 支持人类语音感知的连通性、因果关系和动态神经过程。要实现的研究 我们的两个项目目标将充分利用颅内电极提供的机会。 拟议的工作将利用一个已建立的跨学科的颅内联盟,该联盟有四个数据 每年提供访问数十个主题的收藏网站。该财团将致力于回答 关于言语知觉背后的动态区域间功能的新问题。如果成功,建议的工作 不仅应该增加新的神经科学fic的理解,而且应该正式验证联盟结构是否为 用于颅内研究的模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Brunner其他文献

Peter Brunner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Brunner', 18)}}的其他基金

Non-invasive vagus nerve stimulation to mitigate subarachnoid hemorrhage induced inflammation
无创迷走神经刺激减轻蛛网膜下腔出血引起的炎症
  • 批准号:
    10665166
  • 财政年份:
    2023
  • 资助金额:
    $ 70.2万
  • 项目类别:
An Ecosystem of Technology and Protocols for Adaptive Neuromodulation Research in Humans
人类自适应神经调节研究的技术和协议生态系统
  • 批准号:
    10707462
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
An Ecosystem of Technology and Protocols for Adaptive Neuromodulation Research in Humans
人类自适应神经调节研究的技术和协议生态系统
  • 批准号:
    10516471
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
International Workshop on Advances in Electrocorticography
皮质电图进展国际研讨会
  • 批准号:
    10077123
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000: Software Resource for Adaptive Neurotechnology Research
BCI2000:自适应神经技术研究软件资源
  • 批准号:
    10649719
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000: Software Resource for Adaptive Neurotechnology Research
BCI2000:自适应神经技术研究软件资源
  • 批准号:
    9912872
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000: Software Resource for Adaptive Neurotechnology Research
BCI2000:自适应神经技术研究软件资源
  • 批准号:
    10336760
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000: Software Resource for Adaptive Neurotechnology Research
BCI2000:自适应神经技术研究软件资源
  • 批准号:
    10071302
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000+: A Software Platform for Adaptive Neurotechnologies
BCI2000:自适应神经技术的软件平台
  • 批准号:
    10394429
  • 财政年份:
    2018
  • 资助金额:
    $ 70.2万
  • 项目类别:
BCI2000+: A Software Platform for Adaptive Neurotechnologies
BCI2000:自适应神经技术的软件平台
  • 批准号:
    10037665
  • 财政年份:
    2018
  • 资助金额:
    $ 70.2万
  • 项目类别:

相似海外基金

Causal contributions of deep prefrontal-amygdala circuits to social cognition
深层前额叶杏仁核回路对社会认知的因果贡献
  • 批准号:
    MR/Y010477/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Fellowship
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
  • 批准号:
    2340124
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
  • 批准号:
    MR/Z503769/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Research Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
Causal relationship between taste and smell perception and eating behaviour
味觉和嗅觉与饮食行为之间的因果关系
  • 批准号:
    DE240100014
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Discovery Early Career Researcher Award
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
  • 批准号:
    MR/Y014634/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Research Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SBIR Phase I: Knowledge Graph-powered Information Retrieval and Causal Inference
SBIR 第一阶段:知识图谱驱动的信息检索和因果推理
  • 批准号:
    2335357
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了