Social Networks, Physician Characteristics, and Inappropriate Prescribing of Commonly Misused Prescription Drugs
社交网络、医生特征以及常见误用处方药的不当处方
基本信息
- 批准号:10090907
- 负责人:
- 金额:$ 12.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsBehaviorBenzodiazepinesCharacteristicsCommunity of PracticeDataDatabasesDetectionDiffusionDropsDrug PrescriptionsEpidemicEvolutionFormulariesGeographyHealthHospitalizationIndividualInsuranceInterventionLeadLouisianaManaged CareMedicaidMethodsModelingNetwork-basedOpioidOverdosePathway AnalysisPatient-Focused OutcomesPatientsPatternPhysician&aposs RolePhysiciansPlayPoliciesPositioning AttributePrivatizationProviderRecommendationResearchResearch PersonnelRiskRoleShapesSocial NetworkTennesseeUnited StatesWashingtonanalytical methodbasebehavior changebenzodiazepine abusebenzodiazepine misusecombatdesignimprovedinsightmisuse of prescription only drugsopioid misuseopioid use disorderprescription drug abuseprescription monitoring programprescription opioidrelative effectivenessrole modelsocialsocial relationshipssocial structuretool
项目摘要
PROJECT SUMMARY
Opioid and benzodiazepine misuse and abuse has increased dramatically in recent years. Despite
precipitous increases in overdoses and rising misuse, the role that physicians play in
inappropriate prescribing remains understudied. However, 34% of individuals who misused
prescription medications obtained them directly from a single doctor. Network-based models,
which analyze how the structure of social relations shape norms and behaviors, have successfully
been used to understand physician behavior and change physician practices. Applying network
methods to inappropriate prescribing will move surveillance beyond patient-based algorithms to
physician prescribing patterns and norms. This reorientation has the potential to help identify
physicians who are at risk of inappropriate prescribing, understand how these tendencies
correlate with their network positions, and design network-based interventions to reduce the
spread of prescription drug abuse. In this study, we aim to: (1) Examine the association between
social network position, physician characteristics, and different forms of inappropriate
prescribing and co-prescribing; (2) Use network and behavior co-evolution models to analyze the
role of social influence in the diffusion of inappropriate prescribing practices; (3) Compare the
relative effectiveness of insurance network optimization to eliminate inappropriate prescribers,
Prescription Drug Monitoring Programs, and insurance formulary restrictions. We will draw on
prescriptions of benzodiazepines and opioids from IMS Health's LRx database between January
1, 2005 and December 31, 2016. The 2009 data covered 224,140,604 unique patients, 916,338
prescribers, encompassing 135 million opioid prescriptions and 46 million benzodiazepine
prescriptions. We will augment the LRx data with Medicaid Managed Care claims from three
states. Using IMS and Medicaid data, we will construct longitudinal physician referral networks.
The proposed analyses using this data will provide greater insight into how social network
position and social influence can be leveraged to combat inappropriate prescribing of controlled
substances. Physicians are uniquely positioned to help end the prescription drug epidemic. Past
research indicates that changing prescribing behavior will require interventions targeted at
groups of physicians, rather than individuals, since prescribing norms are reinforced in
communities of practice. Our study will strengthen efforts to better understand prescription drug
abuse and lead to actionable recommendations that public and private stakeholders, as well as
payers can take to reduce the rate of inappropriate prescribing through improved detection
algorithms, more efficient targeting of policies and educational efforts, and new policies.
项目概要
近年来,阿片类药物和苯二氮卓类药物的误用和滥用急剧增加。尽管
药物过量和滥用的急剧增加,医生在其中所扮演的角色
不适当的处方仍未得到充分研究。然而,34% 的人滥用
处方药直接从一位医生那里获得。基于网络的模型,
分析社会关系结构如何塑造规范和行为,成功地
被用来了解医生的行为并改变医生的做法。应用网络
不适当处方的方法将使监测超越基于患者的算法
医生开药的模式和规范。这种重新定位有可能帮助识别
面临不适当处方风险的医生,了解这些倾向如何
与其网络位置相关联,并设计基于网络的干预措施以减少
处方药滥用的蔓延。在本研究中,我们的目标是:(1)检查之间的关联
社交网络位置、医生特征以及不同形式的不当行为
处方和共同处方; (2) 使用网络和行为协同进化模型来分析
社会影响力在不当处方做法传播中的作用; (3)比较
保险网络优化的相对有效性,以消除不适当的处方者,
处方药监测计划和保险处方限制。我们将借鉴
1 月份 IMS Health LRx 数据库中苯二氮卓类药物和阿片类药物的处方
2005年1月1日和2016年12月31日。2009年的数据覆盖了224,140,604名独立患者,916,338名
处方者,包括 1.35 亿张阿片类药物处方和 4600 万张苯二氮卓类药物处方
处方。我们将通过来自三个机构的 Medicaid Managed Care 索赔来扩充 LRx 数据
州。使用 IMS 和医疗补助数据,我们将构建纵向医生转诊网络。
使用这些数据进行的拟议分析将更深入地了解社交网络如何
可以利用地位和社会影响来打击受控药物的不当处方
物质。医生在帮助结束处方药流行方面具有独特的优势。过去的
研究表明,改变处方行为需要针对以下方面进行干预:
医生群体而不是个人,因为处方规范在
实践社区。我们的研究将加强努力更好地了解处方药
滥用并提出可行的建议,公共和私人利益相关者以及
付款人可以通过改进检测来降低不当处方率
算法、更有效地瞄准政策和教育工作以及新政策。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tie Decay and Dissolution: Contentious Prescribing Practices in the Prescription Drug Epidemic.
- DOI:10.1287/orsc.2020.1412
- 发表时间:2021-09
- 期刊:
- 影响因子:4.1
- 作者:Zhang, Victoria (Shu);King, Marissa D.
- 通讯作者:King, Marissa D.
Buprenorphine Treatment By Primary Care Providers, Psychiatrists, Addiction Specialists, And Others.
- DOI:10.1377/hlthaff.2019.01622
- 发表时间:2020-06
- 期刊:
- 影响因子:9.7
- 作者:Olfson, Mark;Zhang, Victoria;Schoenbaum, Michael;King, Marissa
- 通讯作者:King, Marissa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marissa D King其他文献
Marissa D King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 12.01万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 12.01万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 12.01万 - 项目类别:
Collaborative Research and Development Grants