Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
基本信息
- 批准号:10089451
- 负责人:
- 金额:$ 12.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2021-08-23
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAreaAtlasesBlindnessBrainCaringClinicClinic VisitsClinicalClinical ManagementCollaborationsColorComplexCross-Sectional StudiesCustomDataData SetDecision MakingDetectionDevelopmentDiseaseDisease ProgressionDisease modelEarly DiagnosisEyeFutureGlaucomaImageImage AnalysisImaging technologyIndividualInterventionInvestmentsKnowledgeLearningLocationMachine LearningMagnetic Resonance ImagingMapsMeasurableMeasurementMedical ImagingMethodsModelingMonitorMorbidity - disease rateOphthalmologyOptical Coherence TomographyOutcomePatientsPerformanceResearchResearch ProposalsRetinaSamplingSeriesSpeedStructureSystemTechniquesTechnologyTestingThickThinnessTimeTissuesTrainingVisionVisitVisual Fieldsanalytical methodbasecase-by-case basisclinical applicationclinical practicecohortcomputerizedcostdeep learningfallsfeature selectionfollow-upimage processingimaging modalityimprovedin vivoindividual patientinnovationinsightknowledge baselongitudinal analysislongitudinal datasetmachine learning methodnovelocular imagingpersonalized approachpersonalized medicinepersonalized predictionspredictive modelingpreservationpreventprogramsretinal nerve fiber layertheoriestooltreatment planningtrend
项目摘要
Project Summary
Glaucoma is a leading cause of vision morbidity and blindness worldwide. Early disease detection and
sensitive monitoring of progression are crucial to allow timely treatment for preservation of vision. The
introduction of ocular imaging technologies significantly improves these capabilities, but in clinical practice
there are still substantial challenges at managing the optimal care for individual cases due to difficulties of
accurately assessing the potential progression and its speed and magnitude. These difficulties are due to a
variety of causes that change over the course of the disease, including large inter-subject variability, inherent
measurement variability, image quality, varying dynamic ranges of measurements, minimal measurable level of
tissues, etc. In this proposal, we propose novel agnostic data-driven deep learning approaches to detect
glaucoma and accurately forecast its progression that are optimized to each individual case. We will use state-
of-the-art automated computerized machine learning methods, namely the deep learning approach, to identify
structural features embedded within OCT images that are associated with glaucoma and its progression
without any a priori assumptions. This will provide novel insight into structural information, and has shown very
encouraging preliminary results. Instead of relying on the conventional knowledge-based approaches (e.g.
quantifying tissues known to be significantly associated with glaucoma such as retinal nerve fiber layer), the
proposed cutting-edge agnostic deep learning approaches determine the features responsible for future
structural and functional changes out of thousands of features autonomously by learning from the provided
large longitudinal dataset. This program will advance the use of structural and functional information obtained
in the clinics with a substantial impact on the clinical management of subjects with glaucoma. Furthermore, the
developed methods have potentials to be applied to various clinical applications beyond glaucoma and
ophthalmology.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROSHI ISHIKAWA其他文献
HIROSHI ISHIKAWA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROSHI ISHIKAWA', 18)}}的其他基金
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10533641 - 财政年份:2020
- 资助金额:
$ 12.47万 - 项目类别:
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10357755 - 财政年份:2020
- 资助金额:
$ 12.47万 - 项目类别:
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10629148 - 财政年份:2020
- 资助金额:
$ 12.47万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Standard Grant