Deep tensor genomic imputation
深度张量基因组插补
基本信息
- 批准号:10096947
- 负责人:
- 金额:$ 39.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelArchitectureAvocadoAwarenessBindingBiochemicalBiological AssayCell LineCellsCellular AssayChromatinChromatin Interaction Analysis by Paired-End Tag SequencingCollectionComplexComputer softwareCouplesDNADNA MethylationDNA SequenceDNA sequencingDataData SetDiseaseEpigenetic ProcessEvaluationFutureGene ExpressionGenetic TranscriptionGenetic VariationGenomeGenomicsGenotype-Tissue Expression ProjectGoalsGoldHealthHi-CHigh-Throughput Nucleotide SequencingHumanIndividualInternetInvestigationJointsLearningMachine LearningMeasurementMeasuresMethodologyMethodsMethylationModelingMolecularPatternPositioning AttributeProcessPropertyRegulatory ElementResolutionResourcesSamplingScientistSystemTechniquesTechnologyTissuesTrainingUnited States National Institutes of HealthUntranslated RNAValidationVariantWorkbiological systemscell typecostdata standardsdeep neural networkexperimental studygenetic manipulationgenome-widegenomic datagenomic locushistone modificationimprovedin silicolarge datasetsnext generationopen sourcepredictive modelingsyntaxtranscription factorweb portal
项目摘要
Project Summary/Abstract
High-throughput sequencing assays allow scientists to measure biochemical properties like transcription factor
binding, histone modifications, and gene expression in nearly any cell line or primary tissue (“biosample”).
Unfortunately, measuring all possible biochemical properties in every biosample is infeasible, both because of
limited sample availability and because the cost would be prohibitive. We have previously developed a state-of-
the-art imputation method, called Avocado, that can fill in the holes in such data sets. Avocado couples tensor
factorization with a deep neural network. The method is scalable to large data sets and provides more accurate
imputations than competing methods such as ChromImpute or PREDICTD. We have already applied Avocado
systematically to the NIH ENCODE data set and made the imputations publicly available via the ENCODE web
por tal.
Here, we propose to extend Avocado in four important ways. First, we will extend Avocado to handle single-cell
data sets, thereby effectively turning each single-cell experiment into an in silico co-assay that measures multiple
properties of each cell in parallel. Second, we will extend Avocado to work with data such as Hi-C, which measures
three-dimensional properties of DNA. The extension involves converting Avocado's 3D tensor (biosample assay
genomic position) to a 4D tensor with two genomic position axes. This extension will apply to a wide variety
of data types, including various types of Hi-C data, SPRITE, GAM, ChIA-PET and PLAC-seq. Third, we will
enhance Avocado to use variant aware genomic sequence to enable high-resolution imputation of regulatory
profiles. Finally, we will leverage the imputed data to infer cis-regulatory sequence annotations and the molecular
impact of regulatory non-coding variants in one of the most comprehensive collections of cellular contexts.
All of the software produced by this project will be open source, and all of the imputed data and latent
factorizations will be made publicly available via the web portals associated with the NIH 4D Nucleome and
ENCODE Consortia, providing a valuable public resource for users of these data sets.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Stafford Noble其他文献
Learning a latent representation of human genomics using Avocado
使用鳄梨学习人类基因组学的潜在表示
- DOI:
10.1101/2020.06.18.159756 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jacob M. Schreiber;William Stafford Noble - 通讯作者:
William Stafford Noble
Cohesin interacts with a panoply of splicing factors required for cell cycle progression and genomic organization
粘连蛋白与细胞周期进程和基因组组织所需的一系列剪接因子相互作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jung‐Sik Kim;Xiaoyuan He;Jie Liu;Z. Duan;Taeyeon Kim;J. Gerard;Brian S. Kim;William Arbuthnot Sir Lane;William Stafford Noble;B. Budnik;T. Waldman - 通讯作者:
T. Waldman
Self‐Reports about Tinnitus and about Cochlear Implants
关于耳鸣和人工耳蜗的自我报告
- DOI:
10.1097/00003446-200008001-00007 - 发表时间:
2000 - 期刊:
- 影响因子:3.7
- 作者:
William Stafford Noble - 通讯作者:
William Stafford Noble
A COMPARATIVE ANALYSIS OF THE CLINICAL AND FUNCTIONAL OUTCOME OF HIGH FLEXION AND STANDARD TOTAL KNEE REPLACEMENT PROSTHESIS
高屈度与标准全膝关节置换假肢临床及功能结果的比较分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
T. Pramila;Wei Wu;William Stafford Noble;L. Breeden - 通讯作者:
L. Breeden
A biologist ’ s introduction to support vector machines
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
William Stafford Noble - 通讯作者:
William Stafford Noble
William Stafford Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Stafford Noble', 18)}}的其他基金
Optimization and joint modeling for peptide detection by tandem mass spectrometry
串联质谱肽检测的优化和联合建模
- 批准号:
9214942 - 财政年份:2017
- 资助金额:
$ 39.86万 - 项目类别:
Project 2: UW-CNOF Data Analysis and Modeling
项目 2:UW-CNOF 数据分析和建模
- 批准号:
9021413 - 财政年份:2015
- 资助金额:
$ 39.86万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9983850 - 财政年份:2015
- 资助金额:
$ 39.86万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9353379 - 财政年份:2015
- 资助金额:
$ 39.86万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9916567 - 财政年份:2015
- 资助金额:
$ 39.86万 - 项目类别:
Machine learning methods to impute and annotate epigenomic maps
用于估算和注释表观基因组图谱的机器学习方法
- 批准号:
8814095 - 财政年份:2014
- 资助金额:
$ 39.86万 - 项目类别:
Machine learning methods to impute and annotate epigenomic maps
用于估算和注释表观基因组图谱的机器学习方法
- 批准号:
8925082 - 财政年份:2014
- 资助金额:
$ 39.86万 - 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
- 批准号:
8642168 - 财政年份:2013
- 资助金额:
$ 39.86万 - 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
- 批准号:
8840551 - 财政年份:2013
- 资助金额:
$ 39.86万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 39.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




