Optimization and joint modeling for peptide detection by tandem mass spectrometry
串联质谱肽检测的优化和联合建模
基本信息
- 批准号:9214942
- 负责人:
- 金额:$ 33.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmino Acid SequenceAutomobile DrivingBiologicalCellsCollectionColumn ChromatographyCommunitiesComplexComplex MixturesComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDetectionDiagnosticDisciplineEconomicsFertilizationGame TheoryHealthHumanHybridsJointsLibrariesLiquid ChromatographyMachine LearningMass Spectrum AnalysisMethodologyMethodsModelingMolecularNatural Language ProcessingOperations ResearchPeptidesPopulationPost-Translational Protein ProcessingProteinsProteomicsProtocols documentationSamplingSchemeShotgunsSpeedStatistical ModelsTimeVariantWorkcomputer based statistical methodscomputerized toolscostdisease phenotypeexperimental studyimprovedinnovationlearning strategyliquid chromatography mass spectrometrymass spectrometermathematical theorynovelprognosticprotein aminoacid sequencespeech recognitionstatisticstandem mass spectrometrytheoriestool
项目摘要
Project Summary/Abstract
Proteins are the primary functional molecules in living cells, and tandem mass spectrometry provides the most
efficient means of studying proteins in a high-throughput fashion. The proposal aims to use state-of-the-art
methods from the fields of machine learning, statistics, and natural language processing to improve our ability to
make sense of large tandem mass spectrometry data sets. Our project will focus on three key problems in the
analysis of such data:
1. facilitating the use of previously annotated spectra to improve our ability to annotate new spectra by creating
a hybrid search scheme that compares an observed spectrum to a database comprised of theoretical spectra
and previously annotated spectra,
2. enabling the efficient and accurate detection of peptides containing post-translational modifications and
sequence variants, and
3. detecting sets of peptide species that are co-fragmented in the mass spectrometer and hence give rise to
complex, mixture spectra.
Each of these aims will improve the ability of mass spectrometrists to efficiently and accurately identify and quantify
proteins in complex mixtures. To increase the impact of our work, we will continue to make all of our tools available
as free software.
项目总结/摘要
蛋白质是活细胞中的主要功能分子,串联质谱提供了最多的
以高通量方式研究蛋白质的有效手段。该提案旨在利用最先进的
机器学习、统计学和自然语言处理领域的方法,以提高我们的能力,
大型串联质谱数据集的意义。我们的项目将集中在三个关键问题,
分析这些数据:
1.促进使用先前注释的光谱,以通过创建
将观测光谱与由理论光谱组成的数据库进行比较的混合搜索方案
和先前注释的光谱,
2.能够有效和准确地检测含有翻译后修饰的肽,
序列变体,和
3.检测在质谱仪中共片段化的肽种类的集合,并因此产生
复杂的混合光谱。
这些目标中的每一个都将提高质谱仪的能力,以有效和准确地识别和定量
复杂混合物中的蛋白质。为了增加我们工作的影响力,我们将继续提供我们所有的工具
as free自由software软件.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Stafford Noble其他文献
Learning a latent representation of human genomics using Avocado
使用鳄梨学习人类基因组学的潜在表示
- DOI:
10.1101/2020.06.18.159756 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jacob M. Schreiber;William Stafford Noble - 通讯作者:
William Stafford Noble
Cohesin interacts with a panoply of splicing factors required for cell cycle progression and genomic organization
粘连蛋白与细胞周期进程和基因组组织所需的一系列剪接因子相互作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jung‐Sik Kim;Xiaoyuan He;Jie Liu;Z. Duan;Taeyeon Kim;J. Gerard;Brian S. Kim;William Arbuthnot Sir Lane;William Stafford Noble;B. Budnik;T. Waldman - 通讯作者:
T. Waldman
Self‐Reports about Tinnitus and about Cochlear Implants
关于耳鸣和人工耳蜗的自我报告
- DOI:
10.1097/00003446-200008001-00007 - 发表时间:
2000 - 期刊:
- 影响因子:3.7
- 作者:
William Stafford Noble - 通讯作者:
William Stafford Noble
A COMPARATIVE ANALYSIS OF THE CLINICAL AND FUNCTIONAL OUTCOME OF HIGH FLEXION AND STANDARD TOTAL KNEE REPLACEMENT PROSTHESIS
高屈度与标准全膝关节置换假肢临床及功能结果的比较分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
T. Pramila;Wei Wu;William Stafford Noble;L. Breeden - 通讯作者:
L. Breeden
A biologist ’ s introduction to support vector machines
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
William Stafford Noble - 通讯作者:
William Stafford Noble
William Stafford Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Stafford Noble', 18)}}的其他基金
Project 2: UW-CNOF Data Analysis and Modeling
项目 2:UW-CNOF 数据分析和建模
- 批准号:
9021413 - 财政年份:2015
- 资助金额:
$ 33.23万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9983850 - 财政年份:2015
- 资助金额:
$ 33.23万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9353379 - 财政年份:2015
- 资助金额:
$ 33.23万 - 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
- 批准号:
9916567 - 财政年份:2015
- 资助金额:
$ 33.23万 - 项目类别:
Machine learning methods to impute and annotate epigenomic maps
用于估算和注释表观基因组图谱的机器学习方法
- 批准号:
8814095 - 财政年份:2014
- 资助金额:
$ 33.23万 - 项目类别:
Machine learning methods to impute and annotate epigenomic maps
用于估算和注释表观基因组图谱的机器学习方法
- 批准号:
8925082 - 财政年份:2014
- 资助金额:
$ 33.23万 - 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
- 批准号:
8642168 - 财政年份:2013
- 资助金额:
$ 33.23万 - 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
- 批准号:
8840551 - 财政年份:2013
- 资助金额:
$ 33.23万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 33.23万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 33.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




