Machine learning methods to impute and annotate epigenomic maps

用于估算和注释表观基因组图谱的机器学习方法

基本信息

  • 批准号:
    8925082
  • 负责人:
  • 金额:
    $ 28.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-10 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The NIH Roadmap Epigenomics Program has produced reference epigenomic maps derived from a variety of human primary cells and tissues, including pluripotent cell types and in vitro differentiated forms, highly purified primar cells, and a range of fetal and adult tissues. The goal of the proposed project is to develop, validate and apply unsupervised machine learning methods to the joint analysis of these epigenomic maps along with (1) data generated by the NIH ENCODE Consortium, (2) a variety of publicly available data sets that characterize the three-dimensional structure of DNA in the nucleus, and (3) information about evolutionary conservation, represented by cross-species DNA alignments. The first aim of the project will use data imputation methods to carry out virtual functional genomics experiments. The proposed method is based on techniques developed in the context of recommender systems, but is extended to model dependencies along the genomic axis. By simultaneously analyzing the pattern of biochemical activity across a range of cell types and assay types, the proposed imputation method will accurately predict the results of an assay, such as ChIP-seq for a particular histone modification in a particular cell type, that has not yet been carried out. We will systematically apply this method to Roadmap Epigenomics and ENCODE data, filling in missing experiments in the matrix of cell types and assay types. The remaining three specific aims extend and apply our existing system for semi-automated genome annotation, Segway, which integrates a wide variety of functional genomics data into a human interpretable labeling of genomic elements. These analyses will be performed on real data as well as the virtual experiments from Aim 1. We propose a novel, graph-based regularization scheme and show how, using this approach, we can use Segway to perform integrated analysis of data across cell types and integrate 3D genome architecture information from assays such as Hi-C. We also propose a post-processing method to exploit patterns of evolutionary conservation to identify functionally important labels in the resulting annotations. The primary deliverables will include novel software for imputation and annotation, as well as publicly available sets of virtual experiments and genome annotations.
描述(由申请人提供):NIH表观基因组学计划路线图已经生成了来自多种人类原代细胞和组织的参考表观基因组图谱,包括多能细胞类型和体外分化形式,高度纯化的原代细胞,以及一系列胎儿和成人组织。拟议项目的目标是开发、验证和应用无监督机器学习方法来联合分析这些表观基因组图谱,以及(1)由NIH ENCODE联盟生成的数据,(2)各种公开可用的数据集,这些数据集表征了细胞核中DNA的三维结构,以及(3)关于进化守恒的信息,以跨物种DNA比对为代表。该项目的第一个目标是使用数据输入方法进行虚拟功能基因组学实验。提出的方法是基于在推荐系统背景下开发的技术,但扩展到沿基因组轴建模依赖关系。通过同时分析一系列细胞类型和检测类型的生化活性模式,所提出的插补方法将准确预测检测结果,例如针对特定细胞类型中特定组蛋白修饰的ChIP-seq,该检测尚未进行。我们将系统地将该方法应用于Roadmap表观基因组学和ENCODE数据,填补细胞类型和测定类型矩阵中缺失的实验。其余三个具体目标扩展并应用我们现有的半自动基因组注释系统Segway,该系统将各种功能基因组数据集成到人类可解释的基因组元素标记中。这些分析将在Aim 1的真实数据和虚拟实验上进行。我们提出了一种新颖的、基于图形的正则化方案,并展示了如何使用这种方法,我们可以使用Segway对跨细胞类型的数据进行集成分析,并集成来自Hi-C等分析的3D基因组结构信息。我们还提出了一种后处理方法来利用进化守恒模式来识别结果注释中功能重要的标签。主要的可交付成果将包括用于输入和注释的新型软件,以及公开可用的虚拟实验集和基因组注释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Stafford Noble其他文献

Learning a latent representation of human genomics using Avocado
使用鳄梨学习人类基因组学的潜在表示
  • DOI:
    10.1101/2020.06.18.159756
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob M. Schreiber;William Stafford Noble
  • 通讯作者:
    William Stafford Noble
Cohesin interacts with a panoply of splicing factors required for cell cycle progression and genomic organization
粘连蛋白与细胞周期进程和基因组组织所需的一系列剪接因子相互作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jung‐Sik Kim;Xiaoyuan He;Jie Liu;Z. Duan;Taeyeon Kim;J. Gerard;Brian S. Kim;William Arbuthnot Sir Lane;William Stafford Noble;B. Budnik;T. Waldman
  • 通讯作者:
    T. Waldman
Self‐Reports about Tinnitus and about Cochlear Implants
关于耳鸣和人工耳蜗的自我报告
  • DOI:
    10.1097/00003446-200008001-00007
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    William Stafford Noble
  • 通讯作者:
    William Stafford Noble
A COMPARATIVE ANALYSIS OF THE CLINICAL AND FUNCTIONAL OUTCOME OF HIGH FLEXION AND STANDARD TOTAL KNEE REPLACEMENT PROSTHESIS
高屈度与标准全膝关节置换假肢临床及功能结果的比较分析
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Pramila;Wei Wu;William Stafford Noble;L. Breeden
  • 通讯作者:
    L. Breeden
A biologist ’ s introduction to support vector machines
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Stafford Noble
  • 通讯作者:
    William Stafford Noble

William Stafford Noble的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Stafford Noble', 18)}}的其他基金

Deep tensor genomic imputation
深度张量基因组插补
  • 批准号:
    10557916
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
Deep tensor genomic imputation
深度张量基因组插补
  • 批准号:
    10096947
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
Optimization and joint modeling for peptide detection by tandem mass spectrometry
串联质谱肽检测的优化和联合建模
  • 批准号:
    9214942
  • 财政年份:
    2017
  • 资助金额:
    $ 28.29万
  • 项目类别:
Project 2: UW-CNOF Data Analysis and Modeling
项目 2:UW-CNOF 数据分析和建模
  • 批准号:
    9021413
  • 财政年份:
    2015
  • 资助金额:
    $ 28.29万
  • 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
  • 批准号:
    9983850
  • 财政年份:
    2015
  • 资助金额:
    $ 28.29万
  • 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
  • 批准号:
    9353379
  • 财政年份:
    2015
  • 资助金额:
    $ 28.29万
  • 项目类别:
University of Washington Center for Nuclear Organization and Function
华盛顿大学核组织与功能中心
  • 批准号:
    9916567
  • 财政年份:
    2015
  • 资助金额:
    $ 28.29万
  • 项目类别:
Machine learning methods to impute and annotate epigenomic maps
用于估算和注释表观基因组图谱的机器学习方法
  • 批准号:
    8814095
  • 财政年份:
    2014
  • 资助金额:
    $ 28.29万
  • 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
  • 批准号:
    8642168
  • 财政年份:
    2013
  • 资助金额:
    $ 28.29万
  • 项目类别:
BIGDATA: DA: Interpreting massive genomic data sets via summarization
BIGDATA:DA:通过汇总解释海量基因组数据集
  • 批准号:
    8840551
  • 财政年份:
    2013
  • 资助金额:
    $ 28.29万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了