Novel computational approaches to predict drug response and combination effects

预测药物反应和组合效应的新计算方法

基本信息

  • 批准号:
    10133094
  • 负责人:
  • 金额:
    $ 40.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Summary Tailoring the most desired therapy to each individual patient is the primary goal of precision medicine. A reliable and robust predictive model of drug effectiveness based on patients' unique genomic background is the key. For decades, communities have been trying to establish the relationship between molecular characteristics and drug response in complex diseases. Over the last decade, a large amount of genomic and epigenomic data together with pharmacogenomics data and response to perturbations data has been generated for many human cell lines through collaborations in the research community. These projects have led to significant therapeutic discoveries and have provided unprecedented opportunities to predict drug response using molecular fingerprints. However, even with great interest and effort in developing computational methods for predicting drug response, the prediction accuracies are at best only moderate. A related but distinct question is to understand the mechanisms of action (MOA) of drugs. Understanding drug MOAs enables characterization of drug side effects and identification of old drugs for new uses (i.e. drug repositioning). The traditional experimental assays to identify MOAs of drugs are expensive and time- consuming. There are three key questions to be addressed in the study. 1. Can novel computational approaches largely improve prediction accuracy of response to single drugs using comprehensive genomic and chemical information? 2. Can computational approaches provide a systematic way to mine genomics and drug response data to generate biological insights into the mechanisms of actions of various drugs? 3. Is it possible to develop an interpretable and accurate computation model to predict drug combination effects using pharmacogenomics data? Inherent features make it very challenging to predict drug response accurately: High-dimensionality of input data, the complex relationship between input features and response data; and heterogeneous drug/compound response patterns across different genetic lineages. Recently, artificial intelligence (AI) has been making remarkable strides in various applications owing to the rapid progress of “deep learning. In Aim 1 of this study, we will develop novel AI-based approaches to address the computational challenges of improving the prediction accuracy of drug response. In Aim 2 of the study, we will develop a novel computation framework to study of MOA of drugs. In Aim 3, we will develop an interpretable deep-learning based computational framework to predict drug combination effects. In addition, we will develop a user-friendly web portal as an integrated research platform to share the methodology, algorithms and data generated from this proposed study to the research community.
总结 为每位患者量身定制最理想的治疗是精准医疗的主要目标。一 基于患者独特基因组背景的可靠和稳健的药物有效性预测模型, 钥匙几十年来,社区一直试图建立分子之间的关系, 复杂疾病的特点和药物反应。在过去的十年里,大量的基因组和 表观基因组学数据与药物基因组学数据和对扰动的响应数据一起, 通过研究界的合作为许多人类细胞系产生。这些项目 导致了重大的治疗发现,并提供了前所未有的机会来预测药物 使用分子指纹的反应。然而,即使有很大的兴趣和努力, 尽管使用计算机方法来预测药物反应,但预测准确度充其量只是中等的。一 一个相关但又不同的问题是了解药物的作用机制(MOA)。了解药物 MOA使得能够表征药物副作用并识别旧药物用于新用途(即药物 重新定位)。传统的鉴定药物MOA的实验方法昂贵且耗时, 消耗。这项研究要解决三个关键问题。1.新的计算 使用综合基因组学方法, 化学信息?2.计算方法能否提供一种系统的方法来挖掘基因组学, 药物反应数据,以产生对各种药物作用机制的生物学见解?3.吗 有可能开发一个可解释的和准确的计算模型,以预测药物组合的影响, 药物基因组学数据固有特征使得准确预测药物反应非常具有挑战性: 输入数据的高维性,输入特征与响应数据之间的复杂关系; 不同遗传谱系的异质药物/化合物反应模式。最近,人工 人工智能(AI)在各种应用中取得了显着的进步,这是由于人工智能的快速发展。 “深度学习。在本研究的目标1中,我们将开发新的基于AI的方法来解决 提高药物反应预测准确性的计算挑战。在研究目标2中,我们将 开发了一种新的计算框架来研究药物的MOA。在目标3中,我们将开发一个可解释的 基于深度学习的计算框架来预测药物组合效应。此外,我们还将开发 一个用户友好的门户网站,作为一个综合研究平台,分享方法,算法和数据 从这项拟议的研究产生的研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Xie其他文献

Yang Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Xie', 18)}}的其他基金

Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
  • 批准号:
    10378536
  • 财政年份:
    2020
  • 资助金额:
    $ 40.95万
  • 项目类别:
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
  • 批准号:
    10594584
  • 财政年份:
    2020
  • 资助金额:
    $ 40.95万
  • 项目类别:
Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
  • 批准号:
    9104615
  • 财政年份:
    2016
  • 资助金额:
    $ 40.95万
  • 项目类别:
Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
  • 批准号:
    9243275
  • 财政年份:
    2016
  • 资助金额:
    $ 40.95万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10478027
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10170624
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10693235
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
  • 批准号:
    8617729
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
  • 批准号:
    8444696
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
  • 批准号:
    8132363
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 40.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了