Predicting Adjuvant Chemotherapy Response in Lung Cancer

预测肺癌辅助化疗反应

基本信息

  • 批准号:
    8617729
  • 负责人:
  • 金额:
    $ 32.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary: Lung Cancer is the leading cause of death from cancer in the United States. Adjuvant chemotherapy is increasingly used as the standard of care for patients with resected Non-Small-Cell Lung Cancer (NSCLC). However, such treatment is also associated with serious adverse effects. A large amount of drug sensitivity data, as well as clinical, epidemiology and genome-wide molecular profiling data have been collected by The University of Texas Specialized Program in Research Excellence (UT SPORE) in Lung Cancer to develop personalized cancer treatments. However, the integration and translation of these massive data to scientific knowledge and clinical usage has become a bottleneck of current cancer research. This study aims at tackling this problem and building a comprehensive prediction model of response to adjuvant chemotherapy in lung cancer. We will use the existing preclinical, clinical and epidemiology data to develop a comprehensive prediction model. We will collaborate with UT SPORE in Lung Cancer to collect new data on an independent patient cohort to validate the model. The specific aims of this study are: (1) To develop and compare predictive signatures from individual molecular profiling datasets including mRNA expression, protein expression, copy number variation and germline polymorphism data. (2) To build a comprehensive prediction model of response to adjuvant chemotherapy by integrating predictive molecular signatures and clinical information. (3) To validate and characterize the comprehensive prediction model using an independent patient cohort. This project assembles an outstanding research team with complementary expertise in quantitative research, clinical research, translational research, pathology and genetic epidemiology, and is dedicated to improving lung cancer treatments. If implemented successfully, this project will have substantial impact on lung cancer clinical practice and translational cancer research.
描述(由申请人提供):项目概述:肺癌是美国癌症死亡的主要原因。辅助化疗越来越多地被用作切除的非小细胞肺癌(NSCLC)患者的标准治疗。然而,这种治疗也与严重的不良反应有关。大量的药物敏感性数据,以及临床,流行病学和全基因组分子谱数据已被德克萨斯大学肺癌卓越研究专业计划(UT SPORE)收集,以开发个性化的癌症治疗。然而,如何将这些海量数据整合并转化为科学知识和临床应用已成为当前癌症研究的瓶颈。本研究旨在解决这一问题,并建立一个综合的预测模型,辅助化疗对肺癌的反应。 我们将利用现有的临床前、临床和流行病学数据来开发一个全面的预测模型。我们将与UT SPORE在肺癌领域合作,收集独立患者队列的新数据,以验证该模型。本研究的具体目的是:(1)从单个分子谱数据集(包括mRNA表达、蛋白质表达、拷贝数变异和生殖系多态性数据)开发和比较预测特征。(2)结合预测分子标记和临床信息,建立辅助化疗反应的综合预测模型。(3)使用独立患者队列验证和表征综合预测模型。该项目汇集了一支优秀的研究团队,在定量研究,临床研究,转化研究,病理学和遗传流行病学方面具有互补的专业知识,并致力于改善肺癌治疗。如果成功实施,该项目将对肺癌临床实践和转化癌症研究产生重大影响。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HITS-CLIP analysis uncovers a link between the Kaposi's sarcoma-associated herpesvirus ORF57 protein and host pre-mRNA metabolism.
  • DOI:
    10.1371/journal.ppat.1004652
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Sei E;Wang T;Hunter OV;Xie Y;Conrad NK
  • 通讯作者:
    Conrad NK
A novel approach to DNA copy number data segmentation.
一种新的 DNA 拷贝数数据分割方法。
Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.
  • DOI:
    10.1002/sim.5658
  • 发表时间:
    2013-06-15
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wang, Xinlei;Zang, Miao;Xiao, Guanghua
  • 通讯作者:
    Xiao, Guanghua
Identifying CDKN3 Gene Expression as a Prognostic Biomarker in Lung Adenocarcinoma via Meta-analysis.
  • DOI:
    10.4137/cin.s17287
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Zang X;Chen M;Zhou Y;Xiao G;Xie Y;Wang X
  • 通讯作者:
    Wang X
Detection of candidate tumor driver genes using a fully integrated Bayesian approach.
  • DOI:
    10.1002/sim.6066
  • 发表时间:
    2014-05-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Yang, Jichen;Wang, Xinlei;Kim, Minsoo;Xie, Yang;Xiao, Guanghua
  • 通讯作者:
    Xiao, Guanghua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Xie其他文献

Yang Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Xie', 18)}}的其他基金

Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
  • 批准号:
    10378536
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
  • 批准号:
    10594584
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
  • 批准号:
    10133094
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
  • 批准号:
    9104615
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
  • 批准号:
    9243275
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10478027
  • 财政年份:
    2010
  • 资助金额:
    $ 32.72万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10170624
  • 财政年份:
    2010
  • 资助金额:
    $ 32.72万
  • 项目类别:
Data Science Shared Resource
数据科学共享资源
  • 批准号:
    10693235
  • 财政年份:
    2010
  • 资助金额:
    $ 32.72万
  • 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
  • 批准号:
    8444696
  • 财政年份:
    2010
  • 资助金额:
    $ 32.72万
  • 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
  • 批准号:
    8132363
  • 财政年份:
    2010
  • 资助金额:
    $ 32.72万
  • 项目类别:

相似海外基金

3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
  • 批准号:
    10315227
  • 财政年份:
    2021
  • 资助金额:
    $ 32.72万
  • 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
  • 批准号:
    443988
  • 财政年份:
    2021
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
  • 批准号:
    20K09011
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
  • 批准号:
    19K09130
  • 财政年份:
    2019
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
  • 批准号:
    19K18225
  • 财政年份:
    2019
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
  • 批准号:
    18K16337
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
  • 批准号:
    10005254
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
  • 批准号:
    9763320
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
  • 批准号:
    18K07341
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了