Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
基本信息
- 批准号:9243275
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBenchmarkingBindingBinding ProteinsBinding SitesBioinformaticsBiologicalBiologyBiomedical ResearchCell physiologyCellsCellular biologyClinical DataCollaborationsCommunitiesComputational algorithmComputer AnalysisComputer SimulationComputing MethodologiesCouplesDataData AnalysesData SetDatabasesDetectionDiseaseEnsureEnvironmentEtiologyGalaxyGenetic TranscriptionGenomeGoalsHigh-Throughput Nucleotide SequencingImmunoprecipitationInformation TechnologyInheritedLeadMalignant NeoplasmsMeasuresModelingMutationNoisePathogenesisPost-Transcriptional RegulationProbabilityPublic DomainsPublicationsRANK proteinRNARNA BindingRNA SequencesRNA SplicingRNA analysisRNA-Binding ProteinsRegulationReproducibilityResearchResearch InfrastructureResearch PersonnelRoleScienceSignal TransductionSourceStatistical ModelsStructureTechniquesTranscriptTranslationsTransportationValidationWorkbiological systemscircular RNAcomputerized toolscrosslinkcrosslinking and immunoprecipitation sequencingdrug discoveryexperimental studygenome-widegenome-wide analysisimprovedinnovationinsightnotch proteinnoveloutcome forecastprognostic valuepublic health relevancetherapeutic targettooltranscriptome sequencinguser-friendlyweb portal
项目摘要
DESCRIPTION (provided by applicant): Over the past couple of decades, a surge of discoveries have revealed RNA regulation as a central player in cellular processes. Circular RNAs (circRNAs), formed when the two ends of linear transcripts are joined together, were recently identified as a large class of post-transcriptional regulators that perform a range of functions in biological systems. RNAs are regulated by RNA-binding proteins (RBPs) at all post- transcriptional stages, including splicing, transportation, stabilization and translation. Identifyng the functional targets (including both linear and circular RNAs) of these RBPs ranks among the key biomedical research questions and opens a new direction for drug discoveries. Moreover, investigating RBP-RNA binding is now possible on a genome-wide scale, due to the advent of a technique that couples cross-linking immunoprecipitation with high-throughput sequencing (CLIP-seq). The overall goal of this study is to develop novel analytical models and a comprehensive research platform to study RBPs and, more broadly, RNA regulation. A rapidly-expanding amount of CLIP-seq data together with function data, which measure the genome-wide functional changes caused by the binding of a specific RBP, has triggered a critical need for computational methods to systematically analyze the functional targets of RBPs. For this purpose we have already collected extensive CLIP-seq data as well as RNA-seq data, which represent the functional changes caused by RBP-binding. Integrating these large-scale and complementary data sets from different sources will unlock a great opportunity to identify the functional targets of RBPs and to examine the direct interactions between RBPs and circRNAs. More importantly, the findings from our computational analysis will be experimentally validated by our collaborators. In Aim 1.1 of this study, we will propose a novel statistical approach to improve the analysis of CLIP- seq data and the identification of RBP-binding sites. We will compare and evaluate these new computational approaches by using benchmark datasets from the public domain, as well as by generating our own experimental data with experimental validations. In Aim 1.2 of this study, we will develop a powerful computational model to identify the functional targets of RBPs by integrating RNA sequence, secondary structure, RBP-binding and functional data sets. Promising functional targets will be experimentally validated by our collaborators. Circular RNA (circRNA) may bind and sequester RBPs into regulatory roles, and studying RBP- circRNA interactions may provide insights into the role of circRNAs in disease pathogenesis and their potential as therapeutic targets. However, as of yet no computational method has been developed to study RBP- circRNA interactions. In Aim 2, we will propose a novel computational method to systematically study RBP- circRNA interactions and their functions using CLIP-Seq data and RNA-seq data. In Aim 3 of this study, we will develop a publicly-available, comprehensive RBP-RNA interaction web portal with a user-friendly interface and a powerful analysis engine. This web-portal will include all the results, computational algorithms and datasets used in this study. We will integrate these datasets in the web portal together with analytic algorithms developed from this study, so that researchers worldwide can utilize the data and computational tools we have generated. In partnership with the Galaxy team, we plan to develop a user- friendly and reproducible research environment for RNA regulation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Xie其他文献
Yang Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Xie', 18)}}的其他基金
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
- 批准号:
10378536 - 财政年份:2020
- 资助金额:
$ 32.4万 - 项目类别:
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
- 批准号:
10594584 - 财政年份:2020
- 资助金额:
$ 32.4万 - 项目类别:
Novel computational approaches to predict drug response and combination effects
预测药物反应和组合效应的新计算方法
- 批准号:
10133094 - 财政年份:2020
- 资助金额:
$ 32.4万 - 项目类别:
Integrative Analysis to Identify Regulation Targets of RNA-Binding Proteins
综合分析识别 RNA 结合蛋白的调控靶点
- 批准号:
9104615 - 财政年份:2016
- 资助金额:
$ 32.4万 - 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
- 批准号:
8444696 - 财政年份:2010
- 资助金额:
$ 32.4万 - 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
- 批准号:
8617729 - 财政年份:2010
- 资助金额:
$ 32.4万 - 项目类别:
Predicting Adjuvant Chemotherapy Response in Lung Cancer
预测肺癌辅助化疗反应
- 批准号:
8132363 - 财政年份:2010
- 资助金额:
$ 32.4万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant