BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
基本信息
- 批准号:10133117
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsArchitectureAuthorization documentationAwardBiomedical TechnologyCaringCharacteristicsClientClinicalClinical DataClinical MedicineComparative Effectiveness ResearchComplementComplexConsensusDataData AggregationData CollectionDecentralizationDevelopmentDiseaseDistributed DatabasesElectronic Health RecordEthicsFacultyFailureFibrinogenFundingGenomic medicineGenomicsGoalsHealth Care ResearchHealthcareHybridsInfrastructureInstitutionInstitutional PolicyIntuitionInvestigationKnowledgeLibrariesMachine LearningMainstreamingMaintenanceMedicineMetadataMethodsMissionModelingMonitorNational Human Genome Research InstituteOutcomePathway interactionsPatient CarePatientsPopulationPositioning AttributePredispositionPrivacyPrivatizationProcessProtocols documentationRecordsResearchResearch InfrastructureResearch PersonnelRiskSecureSecuritySiteStandardizationSystemTechniquesTechnologyTestingTherapeutic AgentsTimeTrainingTransactUnited States National Institutes of HealthUniversitiesVariantbasebiomedical informaticsblockchaincareerclinical careclinical phenotypeclinically significantcomputer sciencedata sharingdesigndigitaldiverse datahealth care deliveryimprovedinnovationinteroperabilityknowledge basemachine learning algorithmmachine learning methodmedical specialtiesnetwork architecturenovelopen sourcepeerpeer networkspoint of carepredictive modelingprivacy preservationprivacy protectionprogramspublic truststructural genomicssuccesstrendweb portalweb services
项目摘要
7. Project Summary/Abstract
With the wide adoption of electronic health record systems, cross-institutional genomic medicine predictive
modeling is becoming increasingly important, and have the potential to enable generalizable models to
accelerate research and facilitate quality improvement initiatives. For example, understanding whether a
particular variable has clinical significance depends on a variety of factors, one important one being statistically
significant associations between the variant and clinical phenotypes. Multivariate models that predict
predisposition to disease or outcomes after receiving certain therapeutic agents can help propel genomic
medicine into mainstream clinical care. However, most existing privacy-preserving machine learning methods
that have been used to build predictive models given clinical data are based on centralized architecture, which
presents security and robustness vulnerabilities such as single-point-of-failure.
In this proposal, we will develop novel methods for decentralized privacy-preserving genomic medicine predictive
modeling, which can advance comparative effectiveness research, biomedical discovery, and patient-care. Our
first aim is to develop a predictive modeling framework on private Blockchain networks. This aim relies on the
Blockchain technology and consensus protocols, as well as the online and batch machine learning algorithms,
to provide an open-source Blockchain-based privacy-preserving predictive modeling library for further
Blockchain-related studies and applications. We will characterize settings in which Blockchain technology offers
advances over current technologies. The second aim is to develop a Blockchain-based privacy-preserving
genomic medicine modeling architecture for real-world clinical data research networks. These aims are devoted
to the mission of the National Human Genome Research Institute (NHGRI) to develop biomedical technologies
with application domain of genomics and healthcare.
The NIH Pathway to Independence Award provides a great opportunity for the applicant to complement his
computer science background with biomedical knowledge, and specialized training in machine learning and
knowledge-based systems. It will also allow him to investigate new techniques to advance genomic and
healthcare privacy protection. The success of the proposed project will help his long-term career goal of obtaining
a faculty position at a biomedical informatics program at a major US research university and conduct
independently funded research in the field of decentralized privacy-preserving computation.
7。项目摘要/摘要
随着电子健康记录系统的广泛采用,跨机构基因组医学预测
建模变得越来越重要,并有可能使可推广的模型能够
加速研究并促进质量改进计划。例如,了解是否
特定变量具有临床意义取决于多种因素,一个重要的因素是统计学上的一个重要因素
变体和临床表型之间的显着关联。预测的多元模型
接受某些治疗剂后,疾病或结局的易感性可以帮助推动基因组
药物为主流临床护理。但是,大多数现有的隐私机器学习方法
给定临床数据的已用于构建预测模型的,这些模型基于集中式体系结构,
提出安全性和鲁棒性漏洞,例如单点失败。
在此提案中,我们将开发出分散的保护隐私医学预测的新颖方法
建模,可以提高比较有效性研究,生物医学发现和患者护理。我们的
第一个目的是在私人区块链网络上开发一个预测建模框架。这个目标依赖于
区块链技术和共识协议,以及在线和批处理机器学习算法,
提供一个基于开源区块链的隐私预测建模库,以进一步
区块链相关的研究和应用。我们将表征区块链技术提供的设置
超过当前技术的进步。第二个目的是开发基于区块链的隐私保护
现实世界临床数据研究网络的基因组医学建筑建筑。这些目标是专门的
到国家人类基因组研究所(NHGRI)的使命开发生物医学技术
具有基因组学和医疗保健的应用领域。
NIH独立奖奖为申请人提供了一个很好的机会
具有生物医学知识的计算机科学背景,以及机器学习和
基于知识的系统。这也将使他能够调查新技术以推进基因组和
医疗保健隐私保护。拟议项目的成功将有助于他的长期职业目标
在美国一所主要研究大学的生物医学信息学计划上的教师职位并进行
独立资助的在分散的隐私计算领域的研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsung-Ting Kuo其他文献
Tsung-Ting Kuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsung-Ting Kuo', 18)}}的其他基金
SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
- 批准号:
10709531 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
- 批准号:
10522949 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9920181 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9371707 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
- 批准号:
10568586 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: