BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
基本信息
- 批准号:10133117
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsArchitectureAuthorization documentationAwardBiomedical TechnologyCaringCharacteristicsClientClinicalClinical DataClinical MedicineComparative Effectiveness ResearchComplementComplexConsensusDataData AggregationData CollectionDecentralizationDevelopmentDiseaseDistributed DatabasesElectronic Health RecordEthicsFacultyFailureFibrinogenFundingGenomic medicineGenomicsGoalsHealth Care ResearchHealthcareHybridsInfrastructureInstitutionInstitutional PolicyIntuitionInvestigationKnowledgeLibrariesMachine LearningMainstreamingMaintenanceMedicineMetadataMethodsMissionModelingMonitorNational Human Genome Research InstituteOutcomePathway interactionsPatient CarePatientsPopulationPositioning AttributePredispositionPrivacyPrivatizationProcessProtocols documentationRecordsResearchResearch InfrastructureResearch PersonnelRiskSecureSecuritySiteStandardizationSystemTechniquesTechnologyTestingTherapeutic AgentsTimeTrainingTransactUnited States National Institutes of HealthUniversitiesVariantbasebiomedical informaticsblockchaincareerclinical careclinical phenotypeclinically significantcomputer sciencedata sharingdesigndigitaldiverse datahealth care deliveryimprovedinnovationinteroperabilityknowledge basemachine learning algorithmmachine learning methodmedical specialtiesnetwork architecturenovelopen sourcepeerpeer networkspoint of carepredictive modelingprivacy preservationprivacy protectionprogramspublic truststructural genomicssuccesstrendweb portalweb services
项目摘要
7. Project Summary/Abstract
With the wide adoption of electronic health record systems, cross-institutional genomic medicine predictive
modeling is becoming increasingly important, and have the potential to enable generalizable models to
accelerate research and facilitate quality improvement initiatives. For example, understanding whether a
particular variable has clinical significance depends on a variety of factors, one important one being statistically
significant associations between the variant and clinical phenotypes. Multivariate models that predict
predisposition to disease or outcomes after receiving certain therapeutic agents can help propel genomic
medicine into mainstream clinical care. However, most existing privacy-preserving machine learning methods
that have been used to build predictive models given clinical data are based on centralized architecture, which
presents security and robustness vulnerabilities such as single-point-of-failure.
In this proposal, we will develop novel methods for decentralized privacy-preserving genomic medicine predictive
modeling, which can advance comparative effectiveness research, biomedical discovery, and patient-care. Our
first aim is to develop a predictive modeling framework on private Blockchain networks. This aim relies on the
Blockchain technology and consensus protocols, as well as the online and batch machine learning algorithms,
to provide an open-source Blockchain-based privacy-preserving predictive modeling library for further
Blockchain-related studies and applications. We will characterize settings in which Blockchain technology offers
advances over current technologies. The second aim is to develop a Blockchain-based privacy-preserving
genomic medicine modeling architecture for real-world clinical data research networks. These aims are devoted
to the mission of the National Human Genome Research Institute (NHGRI) to develop biomedical technologies
with application domain of genomics and healthcare.
The NIH Pathway to Independence Award provides a great opportunity for the applicant to complement his
computer science background with biomedical knowledge, and specialized training in machine learning and
knowledge-based systems. It will also allow him to investigate new techniques to advance genomic and
healthcare privacy protection. The success of the proposed project will help his long-term career goal of obtaining
a faculty position at a biomedical informatics program at a major US research university and conduct
independently funded research in the field of decentralized privacy-preserving computation.
7.项目总结/摘要
随着电子健康记录系统的广泛采用,跨机构的基因组医学预测
建模正变得越来越重要,并有可能使通用模型,
加快研究和促进质量改进举措。例如,了解一个
特定变量是否具有临床意义取决于多种因素,其中一个重要因素是统计学
变异与临床表型之间的显著关联。多变量模型预测
接受某些治疗剂后的疾病易感性或结果可以帮助推动基因组
医学纳入主流临床护理。然而,大多数现有的隐私保护机器学习方法
已经被用来建立给定临床数据的预测模型,是基于集中式架构,
存在安全性和鲁棒性漏洞,例如单点故障。
在这项提案中,我们将开发新的方法,用于分散的隐私保护基因组医学预测
建模,这可以推进比较有效性研究,生物医学发现和病人护理。我们
第一个目标是在私有区块链网络上开发预测建模框架。这一目标依赖于
区块链技术和共识协议,以及在线和批量机器学习算法,
提供一个开源的基于区块链的隐私保护预测建模库,
区块链相关的研究和应用。我们将描述区块链技术提供的设置
超越现有技术。第二个目标是开发基于区块链的隐私保护
用于现实世界临床数据研究网络的基因组医学建模架构。这些目标致力于
国家人类基因组研究所(NHGRI)开发生物医学技术的使命
应用领域为基因组学和医疗保健。
NIH独立之路奖为申请人提供了一个很好的机会,以补充他的
具有生物医学知识的计算机科学背景,以及机器学习和
基于知识的系统。这也将使他能够研究新技术,以推进基因组和
医疗隐私保护。该项目的成功将有助于他实现长期的职业目标,
在美国一所主要研究型大学的生物医学信息学项目担任教职,
独立资助的分散隐私保护计算领域的研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsung-Ting Kuo其他文献
Tsung-Ting Kuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsung-Ting Kuo', 18)}}的其他基金
SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
- 批准号:
10709531 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
- 批准号:
10522949 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9920181 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9371707 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant














{{item.name}}会员




