SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories

SOCAL:跨实验室临床数据的隐私保护共享

基本信息

  • 批准号:
    10522949
  • 负责人:
  • 金额:
    $ 32.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Privacy and security of personal information has become one of the major grand challenges in modern society, especially for healthcare studies. Re-identification risks and data breaches require new policies and regulations for data sharing across healthcare institutions and research laboratories. While policy cannot solve the problem on its own, advanced technologies that work hand in hand with policy are important to address the privacy/security concerns. Predictive analytics can support quality improvement, clinical research, and eventually impact patient health status. Extensive clinical variable information and voluminous data records from multiple institutions and laboratories are necessary to further improve the performance of modeling approaches and to identify medication-outcome associations for diseases. Nonetheless, the transfer of such sensitive data among institutions/laboratories can present serious privacy risks, which can jeopardize NIH’s mission. Aiming at mitigating the privacy problem while increasing predictive capability via cross-institutional modeling, prior studies proposed distributed methods to exchange only the predictive models, but not patient data. However, these methods still pose many challenges to the clinical cross-institutional learning problem, including the need for more comprehensive clinical variables and more patient records to achieve better prediction discrimination and build more generalizable models, the necessity for discovery/alleviation of data manipulation to increase the trustworthiness of the collaboratively trained models, and the requirement for more validation to ensure usability. In this proposal, we plan to develop SOCAL (Privacy-protecting Sharing Of Clinical data Across Laboratories), a distributed framework addressing these challenges by integrating vertical/horizontal modeling methods to include both more complete variables and more records, discovering/alleviating data manipulation incidents using models recorded on blockchain, and conducting controlled experiments and designing/testing a web portal with physician-researchers to increase the usability of the system. SOCAL will be evaluated on a Coronavirus Disease 2019 (COVID-19) dataset from five University of California (UC) Health medical centers. We expect the knowledge/capability of collaborative modeling can be improved, the trustworthiness of the learning process can be enhanced, and the framework will be ready for use. SOCAL is innovative because it will be a new integration methodology for vertical/horizontal modeling, a novel data manipulation resisting methods, and a hardened prototype for a practical blockchain application. We anticipate a powerful impact of the SOCAL framework to largely reduce the privacy concerns of predictive modeling tasks for various stakeholders, including healthcare providers, clinical researchers, and patients. Upon completion, SOCAL can accelerate the development of methods/technologies to increase willingness of institutions to participate in such a collaboration for improving the effectiveness of healthcare.
项目摘要 个人信息的隐私和安全已成为现代社会的重大挑战之一, 尤其是在医疗研究中。重新识别风险和数据泄露需要新的政策和法规 用于医疗机构和研究实验室之间的数据共享。虽然政策不能解决问题, 就其本身而言,与政策携手合作的先进技术对于解决 隐私/安全问题。预测分析可以支持质量改进、临床研究, 影响患者健康状况。广泛的临床变量信息和来自多个 机构和实验室是必要的,以进一步提高性能的建模方法, 确定药物治疗与疾病结果之间的关联。然而,这些敏感数据在 机构/实验室可能存在严重的隐私风险,这可能危及NIH的使命。针对 缓解隐私问题,同时通过跨机构建模提高预测能力, 提出了分布式方法,仅交换预测模型,而不交换患者数据。但这些 方法仍然对临床跨机构学习问题提出了许多挑战,包括需要 更全面的临床变量和更多的患者记录,以实现更好的预测区分, 建立更通用的模型,发现/减轻数据操作的必要性,以增加 协作训练模型的可信度,以及需要更多验证以确保可用性。 在本提案中,我们计划开发SOCAL(隐私保护跨实验室临床数据共享), 分布式框架通过集成垂直/水平建模方法来解决这些挑战, 包括更完整变量和更多记录,发现/减轻数据操纵事件 使用记录在区块链上的模型,进行受控实验并设计/测试门户网站 与医生研究人员合作,以提高系统的可用性。SOCAL将在冠状病毒上进行评估 来自五个加州大学(UC)健康医疗中心的2019年疾病(COVID-19)数据集。我们预计 知识/能力的协作建模可以提高,学习过程的可信度可以 该框架将得到加强,并准备投入使用。SOCAL是创新的,因为它将是一个新的整合 垂直/水平建模的方法,一种新的数据操纵抵抗方法,以及一种硬化的 实际区块链应用的原型。我们预计SOCAL框架的强大影响, 大大减少了包括医疗保健在内的各种利益相关者对预测建模任务的隐私担忧 提供者、临床研究人员和患者。完成后,SOCAL可以加快发展, 方法/技术,以提高机构参与这种合作的意愿, 医疗保健的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tsung-Ting Kuo其他文献

Tsung-Ting Kuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tsung-Ting Kuo', 18)}}的其他基金

SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
  • 批准号:
    10709531
  • 财政年份:
    2022
  • 资助金额:
    $ 32.84万
  • 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
  • 批准号:
    10133117
  • 财政年份:
    2019
  • 资助金额:
    $ 32.84万
  • 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
  • 批准号:
    9920181
  • 财政年份:
    2019
  • 资助金额:
    $ 32.84万
  • 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
  • 批准号:
    9371707
  • 财政年份:
    2017
  • 资助金额:
    $ 32.84万
  • 项目类别:

相似海外基金

Developing a comprehensive assessment for cardiovascular sequelae of COVID-19 using computed tomography and artificial intelligence
使用计算机断层扫描和人工智能对 COVID-19 心血管后遗症进行全面评估
  • 批准号:
    22K15867
  • 财政年份:
    2022
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Artificial intelligence assisted Method, Optimizing the Prediction of Patient Outcomes among Long COVID-19 Patients.
人工智能辅助方法,优化长期 COVID-19 患者的患者结果预测。
  • 批准号:
    473331
  • 财政年份:
    2022
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Operating Grants
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
  • 批准号:
    10845418
  • 财政年份:
    2022
  • 资助金额:
    $ 32.84万
  • 项目类别:
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
  • 批准号:
    10616349
  • 财政年份:
    2022
  • 资助金额:
    $ 32.84万
  • 项目类别:
AICORE-kids: Artificial Intelligence COVID-19 Risk AssEssment for kids
AICORE-kids:针对儿童的人工智能 COVID-19 风险评估
  • 批准号:
    10320488
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
AICORE-kids: Artificial Intelligence COVID-19 Risk AssEssment for kids
AICORE-kids:针对儿童的人工智能 COVID-19 风险评估
  • 批准号:
    10733689
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
Artificial intelligence-based analysis of cough for COVID-19 screening in Montreal
基于人工智能的咳嗽分析,用于蒙特利尔的 COVID-19 筛查
  • 批准号:
    459202
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Operating Grants
COVID-19 Variant Supplement - Point of Care Heart-Lung Imaging for Patients Presenting with COVID-19 Symptoms: Artificial Intelligence Precision Modeling for Prediction of Outcomes
COVID-19 变异补充 - 针对出现 COVID-19 症状的患者的护理点心肺成像:用于预测结果的人工智能精确模型
  • 批准号:
    443282
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Operating Grants
COVID-19 Related Hate Speech and Misinformation Artificial Intelligence Research
COVID-19 相关仇恨言论和错误信息人工智能研究
  • 批准号:
    565378-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
SBIR Phase I: An Artificial Intelligence-Inspired Computing Application for Detecting the Early Onset of Pneumonia (COVID-19)
SBIR 第一阶段:人工智能启发的计算应用程序,用于检测肺炎 (COVID-19) 的早期发作
  • 批准号:
    2028972
  • 财政年份:
    2021
  • 资助金额:
    $ 32.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了