SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
基本信息
- 批准号:10709531
- 负责人:
- 金额:$ 32.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressArtificial IntelligenceCOVID-19CaliforniaClinicalClinical DataClinical ResearchCollaborationsDataData SetDecentralizationDiscriminationDiseaseEffectivenessElectronic Health RecordEnsureExtravasationFailureHealthHealth PersonnelHealth StatusHealth protectionHealthcareHospitalsInstitutionIntuitionKnowledgeLaboratoriesLaboratory ResearchLearningMachine LearningMedical centerMethodologyMethodsMissionModelingModernizationOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPoliciesPredictive AnalyticsPrimary Care PhysicianPrivacyProcessProtocols documentationRecordsRegulationResearch PersonnelRiskSecuritySiteSocietiesSystemTechnologyTestingTrainingUnited States National Institutes of HealthUniversitiesValidationWorkblockchaincare providersdata sharingdata warehousedesignexperimental studyhealth care qualityimprovedinnovationlearning strategymethod developmentnovelpeerpredictive modelingprivacy preservationprivacy protectionprototypetrustworthinessusabilityweb portalwillingness
项目摘要
Project Summary
Privacy and security of personal information has become one of the major grand challenges in modern society,
especially for healthcare studies. Re-identification risks and data breaches require new policies and regulations
for data sharing across healthcare institutions and research laboratories. While policy cannot solve the problem
on its own, advanced technologies that work hand in hand with policy are important to address the
privacy/security concerns. Predictive analytics can support quality improvement, clinical research, and eventually
impact patient health status. Extensive clinical variable information and voluminous data records from multiple
institutions and laboratories are necessary to further improve the performance of modeling approaches and to
identify medication-outcome associations for diseases. Nonetheless, the transfer of such sensitive data among
institutions/laboratories can present serious privacy risks, which can jeopardize NIH’s mission. Aiming at
mitigating the privacy problem while increasing predictive capability via cross-institutional modeling, prior studies
proposed distributed methods to exchange only the predictive models, but not patient data. However, these
methods still pose many challenges to the clinical cross-institutional learning problem, including the need for
more comprehensive clinical variables and more patient records to achieve better prediction discrimination and
build more generalizable models, the necessity for discovery/alleviation of data manipulation to increase the
trustworthiness of the collaboratively trained models, and the requirement for more validation to ensure usability.
In this proposal, we plan to develop SOCAL (Privacy-protecting Sharing Of Clinical data Across Laboratories), a
distributed framework addressing these challenges by integrating vertical/horizontal modeling methods to
include both more complete variables and more records, discovering/alleviating data manipulation incidents
using models recorded on blockchain, and conducting controlled experiments and designing/testing a web portal
with physician-researchers to increase the usability of the system. SOCAL will be evaluated on a Coronavirus
Disease 2019 (COVID-19) dataset from five University of California (UC) Health medical centers. We expect the
knowledge/capability of collaborative modeling can be improved, the trustworthiness of the learning process can
be enhanced, and the framework will be ready for use. SOCAL is innovative because it will be a new integration
methodology for vertical/horizontal modeling, a novel data manipulation resisting methods, and a hardened
prototype for a practical blockchain application. We anticipate a powerful impact of the SOCAL framework to
largely reduce the privacy concerns of predictive modeling tasks for various stakeholders, including healthcare
providers, clinical researchers, and patients. Upon completion, SOCAL can accelerate the development of
methods/technologies to increase willingness of institutions to participate in such a collaboration for improving
the effectiveness of healthcare.
项目摘要
个人信息的隐私和安全已成为现代社会的主要挑战之一,
特别是用于医疗保健研究。重新确定风险和数据泄露需要新的政策和法规
用于跨医疗机构和研究实验室的数据共享。虽然政策无法解决问题
就其本身而言,与政策携手合作的高级技术对于解决该政策很重要
隐私/安全问题。预测分析可以支持质量提高,临床研究,并最终支持
影响患者的健康状况。来自多个的大量临床变量信息和大量数据记录
机构和实验室对于进一步提高建模方法的性能和实验室是必要的
确定疾病的药物结果关联。但是,这种敏感数据在
机构/实验室可能会出现严重的隐私风险,这可能会危害NIH的使命。瞄准
通过跨机构建模,可以减轻隐私问题,同时提高预测能力,先前的研究
提出的分布式方法仅交换预测模型,但不交换患者数据。但是,这些
方法仍然对临床跨机构学习问题构成许多挑战,包括需要
更全面的临床变量和更多的患者记录,以实现更好的预测歧视和
建立更具概括的模型,这是发现/减轻数据操纵以增加的必要的模型
经过协作培训的模型的可信赖性,以及对确保可用性的更多验证的要求。
在此提案中,我们计划开发SOCAL(保护跨实验室的临床数据的隐私共享),
分布式框架通过将垂直/水平建模方法集成到
包括更多完整的变量和更多记录,发现/减轻数据操纵事件
使用记录在区块链上的模型,并进行受控实验并设计/测试Web门户网站
与物理研究者一起提高系统的可用性。 SOCAL将在冠状病毒上进行评估
来自加利福尼亚大学(UC)卫生医疗中心的疾病2019(COVID-19)数据集。我们期望
协作建模的知识/能力可以提高,学习过程的可信度可以
增强,框架将准备好使用。 SOCAL具有创新性,因为它将是一个新的整合
垂直/水平建模的方法,一种新型的数据操纵方法和硬化的方法
实用区块链应用的原型。我们预计SOCAL框架对
在很大程度上减少了包括医疗保健在内的各种利益相关者的预测建模任务的隐私问题
提供者,临床研究人员和患者。完成后,SOCAL可以加速
方法/技术增加了机构参与这种协作以改进的意愿
医疗保健的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsung-Ting Kuo其他文献
Tsung-Ting Kuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsung-Ting Kuo', 18)}}的其他基金
SOCAL: Privacy-protecting Sharing Of Clinical Data Across Laboratories
SOCAL:跨实验室临床数据的隐私保护共享
- 批准号:
10522949 - 财政年份:2022
- 资助金额:
$ 32.72万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
10133117 - 财政年份:2019
- 资助金额:
$ 32.72万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9920181 - 财政年份:2019
- 资助金额:
$ 32.72万 - 项目类别:
BECKON - Block Estimate Chain: creating Knowledge ON demand & protecting privacy
BECKON - 区块估算链:按需创建知识
- 批准号:
9371707 - 财政年份:2017
- 资助金额:
$ 32.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 32.72万 - 项目类别:
Geles: A Novel Imaging Informatics System for Generalizable Lesion Identification in Neuroendocrine Tumors
Geles:一种用于神经内分泌肿瘤普遍病变识别的新型影像信息学系统
- 批准号:
10740578 - 财政年份:2023
- 资助金额:
$ 32.72万 - 项目类别: