Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
基本信息
- 批准号:10238819
- 负责人:
- 金额:$ 66.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAdoptedAffectBindingBiochemicalBiologicalBiological AssayBiologyCellsChromatinChromosomesClinicClinicalCollaborationsCommunitiesComplementComplexCoupledCryoelectron MicroscopyDNADataDevelopmentDisease ProgressionDrug IndustryDrug TargetingDrug resistanceEnzymesFutureGenerationsGenesGuidelinesHIVHIV IntegraseHIV Integrase InhibitorsHIV-1Histone H3HybridsIndividualInfectionInstitutesIntegraseInvestigationMacromolecular ComplexesMediatingMolecularMutationNucleoproteinsOhioOligonucleotidesPathway interactionsPatientsPatternPharmaceutical PreparationsPositioning AttributeProceduresProcessResearchResistanceResistance developmentResistance profileResolutionRoleScientistSpumavirusStructureTailTechniquesTranslatingUnited States National Institutes of HealthUniversitiesVariantViralVirusVirus IntegrationWorkantiretroviral therapybaseclinically relevantdesigndrug actiondrug developmenteffective therapyexperimental studyimprovedinhibitor/antagonistinsightinterestlens epithelium-derived growth factormutantnovelparticleprofiles in patientsprototypepublic health relevanceresponsestructural biologysuccesstooltranscriptional coactivator p75viral DNAviral resistancevirology
项目摘要
Abstract
The Human Immunodeficiency Virus Type 1 (HIV-1, hereafter referred to as HIV) currently infects ~37 million
people worldwide, and the number of infected individuals continues to rise. In the absence of a cure, antiretroviral
therapy (ART) represents the primary treatment option, as it slows disease progression, and limits new infections.
Integrase (IN) Strand Transfer Inhibitors (INSTIs) are a class of ART that block integration of viral DNA into host
chromosomes, a process that is mediated by the viral IN enzyme, which assembles into oligomeric nucleoprotein
complexes on the ends of viral DNA, termed “intasomes”. INSTIs selectively target intasomes and represent
first-line therapies in the clinic. However, the emergence of IN variants resistant to INSTIs is a major clinical
problem. Structural biology approaches can decipher the molecular mechanisms underlying drug action and
resistance, providing useful information for rationally improving current therapies. In this proposal, approaches
centered around revolutionary advances in cryo-electron microscopy for structural studies will be used to
understand how INSTIs interact with their natural drug target, the HIV intasome, as well as mechanisms by which
resistance to these drugs emerges.
The proposed aims will address several major themes. Aim 1 will define the mechanisms of action of clinical
and developmental INSTIs in the context of HIV intasomes. Procedures used to perform high-resolution
structural studies of INSTI-bound complexes by cryo-EM will then be adopted to decipher novel, clinically
relevant mechanisms of drug resistance that arise in response to INSTI treatment. This work will be
complemented using biochemical and virology assays designed to dissect key interactions between HIV
intasomes and INSTIs and to validate structural findings. Aim 2 will extend these findings to define INSTI
mechanism of action in the presence of biologically relevant cellular factors, including methylated
mononucleosomes (mMNs; the natural target for HIV integration) and lens epithelium-derived growth factor
(LEDGF). Aim 2 will therefore define the biochemical and structural mechanisms by which INSTIs interact with
and inhibit IN catalytic activity in the context of the intasome-LEDGF-mMN complex, thereby elucidating how
INSTIs function in infected cells and their precise stage of activity.
In addition to providing the first structural information for INSTI interactions with their natural drug target in
the presence of relevant cellular factors, this work will: 1) elucidate how mutations within the IN active site disrupt
drug binding, 2) define the precise stage and mechanism of action of this important class of drugs in a cellular
context, and 3) provide blueprints for the rational improvement of future INSTIs.
!
抽象的
人类免疫缺陷病毒1型(HIV-1,以下称为HIV)当前感染了约3700万
全球人民,受感染者的数量继续增加。在没有治疗的情况下抗逆转录病毒
治疗(ART)代表了主要的治疗选择,因为它减慢了疾病的进展并限制了新的感染。
整合酶(IN)链转移抑制剂(Instis)是一类艺术,将病毒DNA整合到宿主中
染色体,该过程是由酶中病毒介导的,该过程聚集成寡聚核蛋白
病毒DNA末端的复合物称为“ intomes”。有选择地针对静态并表示
诊所中的一线疗法。然而,抗性研究的变体的出现是主要的临床
问题。结构生物学方法可以破译药物作用的分子机制和
阻力,为合理改善当前疗法提供有用的信息。在此提案中,方法
以结构研究的冷冻电子显微镜的革命进步为中心
了解研究所如何与其自然药物靶标相互作用,艾滋病毒Intasome以及通过的机制
对这些药物的抗性出现。
拟议的目标将解决几个主要主题。 AIM 1将定义临床作用机理
并在艾滋病毒英特膜的背景下发展。用于执行高分辨率的程序
然后,Cryo-Em对结合结合复合物的结构研究将被采用以破译小说在临床上
响应于Insti治疗而产生的耐药性机制。这项工作将是
使用旨在剖析HIV之间关键相互作用的生化和病毒学测定法完成
intomes and Instis并验证结构发现。 AIM 2将扩展这些发现以定义Insti
在存在生物学相关的细胞因子的情况下,作用机理,包括甲基化
单核小体(MMN;艾滋病毒整合的自然靶标)和镜片上皮生长因子
(LEDGF)。因此,AIM 2将定义Intist与Instis相互作用的生化和结构机制
并抑制在Intasome-LeDGF-MMN复合物的背景下催化活性,从而阐明了如何
Instis在感染细胞及其活性阶段的功能。
除了提供与其自然药物目标相互作用的第一个结构信息
相关细胞因素的存在,这项工作将:1)阐明主动部位中的突变如何破坏
药物结合,2)定义该重要类药物在细胞中的精确阶段和作用机理
背景和3)为未来Intis的合理改进提供了蓝图。
呢
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Retroviral integrase: Structure, mechanism, and inhibition.
- DOI:10.1016/bs.enz.2021.06.007
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Passos DO;Li M;Craigie R;Lyumkis D
- 通讯作者:Lyumkis D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Lyumkis其他文献
Dmitry Lyumkis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Lyumkis', 18)}}的其他基金
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
9753903 - 财政年份:2017
- 资助金额:
$ 66.85万 - 项目类别:
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
10551720 - 财政年份:2017
- 资助金额:
$ 66.85万 - 项目类别:
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
10661078 - 财政年份:2017
- 资助金额:
$ 66.85万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9002750 - 财政年份:2015
- 资助金额:
$ 66.85万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9349372 - 财政年份:2015
- 资助金额:
$ 66.85万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9561928 - 财政年份:2015
- 资助金额:
$ 66.85万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 66.85万 - 项目类别:
Multinuclear Dioxygen-Utilizing Copper Enzymes: Diverse Roles for Aromatic Redox Active Amino Acids
多核双氧利用铜酶:芳香族氧化还原活性氨基酸的多种作用
- 批准号:
10714992 - 财政年份:2023
- 资助金额:
$ 66.85万 - 项目类别:
Optimization of Flexible Neural Probe Arrays for Multi-Region Recordings in Rodents and Nonhuman Primates
用于啮齿动物和非人类灵长类动物多区域记录的柔性神经探针阵列的优化
- 批准号:
10401221 - 财政年份:2022
- 资助金额:
$ 66.85万 - 项目类别:
Chemical Rescue of Protein Kinases for Cell Signaling Applications
用于细胞信号传导应用的蛋白激酶的化学救援
- 批准号:
10331818 - 财政年份:2021
- 资助金额:
$ 66.85万 - 项目类别:
Design of Protease Inhibitors to Target HTLV-1
针对 HTLV-1 的蛋白酶抑制剂的设计
- 批准号:
10201509 - 财政年份:2020
- 资助金额:
$ 66.85万 - 项目类别: