Operationalizing Behavioral Theory for mHealth: Dynamics, Context, and Personalization
移动医疗行为理论的实施:动态、情境和个性化
基本信息
- 批准号:10244991
- 负责人:
- 金额:$ 50.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-19 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAlcoholsAlgorithmsAreaBayesian ModelingBayesian NetworkBehaviorBehavior TherapyBehavioralBehavioral ModelBehavioral SciencesBiological ModelsCalendarCardiovascular DiseasesCardiovascular systemCellular PhoneCessation of lifeChronicChronic DiseaseCognitionComplexComputer ModelsCuesDataDevelopmentDiabetes MellitusEffectivenessEnvironmentExpectancyFoundationsFundingGoalsHealth TechnologyHealth behaviorHealth behavior changeHealthcareHumanIndividualInterventionLocationMalignant NeoplasmsMeasurementMeasuresModelingNon-Insulin-Dependent Diabetes MellitusObesityOutcomeOverweightPatient Self-ReportPatientsPhysical activityPopulationProcessPublic HealthRandomizedResearchSample SizeSelf EfficacySeriesShapesSourceStatistical ModelsStressStructureTechnologyTestingTimeTobacco useUncertaintyUnhealthy DietUnited States National Institutes of HealthWalkingWeatherWorkadaptive interventionadult obesitybasebehavior changecausal modelcohortcontextual factorsdesigndigitaldynamic systemeffective interventionefficacy outcomesfallsflexibilityimprovedmHealthmobile computingmultiscale datanovelphysical inactivityrandomized trialresearch and developmentresponsesedentarysedentary lifestylesocial cognitive theorysoundtheoriestherapy designtoolwearable sensor technology
项目摘要
Unhealthy behaviors contribute to the majority of chronic diseases, which account for 86% of all healthcare
spending in the US. Despite a great deal of research, the development of behavior change interventions that
are effective, scalable, and sustainable remains challenging. Recent advances in mobile sensing and
smartphone-based technologies have led to a novel and promising form of intervention, called a “Just-in-time,
adaptive intervention” (JITAI), which has the potential to continuously adapt to changing contexts and
personalize to individual needs and opportunities for behavior change. Although interventions have been
shown to be more effective when based on sound theory, current behavioral theories lack the temporal
granularity and multiscale dynamic structure needed for developing effective JITAIs based on measurements
of complex dynamic behaviors and contexts. Simultaneously, there is a lack of modeling frameworks that can
express dynamic, temporally multiscale theories and represent dynamic, temporally multiscale data. This
project will address the theory-development, measurement, and modeling challenges and opportunities
presented by intensively collected longitudinal data, with a focus on physical activity and sedentary behavior,
and broad implications for other behaviors. For efficiency, we build on the NIH-funded year-long micro-
randomized trial (MRT) of HeartSteps (n=60), an adaptive mHealth intervention based on Social-Cognitive
Theory (SCT) developed to increase walking and decrease sedentary behavior in patients with cardiovascular
disease. The aims of this new proposal are: 1) Refine and develop dynamic measures of theoretical constructs
that influence our target behaviors, 2) Enhance HeartSteps with the measures developed in Aim 1 and collect
data from two additional year-long HeartSteps cohorts (sedentary overweight/obese adults (n=60) and type 2
diabetes patients (n=60), total n=180), 3) Develop a modeling framework to operationalize dynamic and
contextualized theories of behavior in an intervention setting, and 4) Improve prediction of SCT outcomes
using increasingly complex models. The work proposed here will provide new digital, data driven measures of
key behavioral theory constructs at the momentary, daily, and weekly time scales, provide new tools tailored
for the specification of complex models of behavioral dynamics, as well as new model estimation tools tailored
specifically to the complex, longitudinal, multi-time scale behavioral and contextual data that are now
accessible using mHealth technologies. Finally, we will leverage the collected data and the proposed modeling
tools to develop and test enhanced, dynamic extensions of social cognitive theory operationalized as fully
quantified, predictive dynamical models. Collectively, this work will provide the theoretical foundations and
tools needed to significantly increase the effectiveness of physical activity-based mobile health interventions
over multiple time scales, including their ability to effectively support behavior change over longer time scales.
!
不健康的行为导致了大多数慢性病,占所有医疗保健的86%
在美国消费。尽管进行了大量研究,但行为改变干预措施的发展,
有效、可扩展和可持续的方法仍然具有挑战性。在移动的传感和
基于智能手机的技术已经导致了一种新颖的和有前途的干预形式,称为“及时,
适应性干预”(JITAI),它有可能不断适应不断变化的环境,
个性化的个人需求和行为改变的机会。虽然干预措施已
被证明是更有效的时候,基于健全的理论,目前的行为理论缺乏时间
开发基于测量的有效JITAI所需的粒度和多尺度动态结构
复杂的动态行为和环境。同时,缺乏建模框架,
表达动态的、时间上的多尺度理论,并表示动态的、时间上的多尺度数据。这
项目将解决理论发展,测量和建模的挑战和机遇
通过集中收集的纵向数据呈现,重点关注身体活动和久坐行为,
以及对其他行为的广泛影响。为了提高效率,我们建立在NIH资助的为期一年的微-
HeartSteps(n=60)的随机试验(MRT),这是一种基于社会认知的自适应移动健康干预措施
理论(SCT)的发展,以增加步行和减少久坐不动的行为,心血管疾病患者
疾病这一新建议的目的是:1)完善和发展理论结构的动态措施
2)用目标1中制定的措施增强HeartSteps,并收集
来自另外两个为期一年的HeartSteps队列(久坐超重/肥胖成人(n=60)和2型糖尿病)的数据
糖尿病患者(n=60),总共n=180),3)开发模型框架以操作动态和
在干预环境中的情境化行为理论,以及4)改善SCT结果的预测
使用越来越复杂的模型。这里提出的工作将提供新的数字,数据驱动的措施,
关键行为理论在瞬间,每日和每周的时间尺度上构建,提供了定制的新工具
用于行为动力学的复杂模型的规范,以及定制的新模型估计工具
特别是复杂的,纵向的,多时间尺度的行为和背景数据,
使用移动医疗技术。最后,我们将利用收集的数据和建议的建模
工具,以开发和测试增强,社会认知理论的动态扩展操作作为充分
量化的预测性动力学模型。总的来说,这项工作将提供理论基础,
显著提高基于身体活动的移动的健康干预措施的有效性所需的工具
在多个时间尺度上,包括他们在更长的时间尺度上有效支持行为改变的能力。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arie Kapteyn其他文献
Arie Kapteyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arie Kapteyn', 18)}}的其他基金
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10004553 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10663917 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10468721 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10192630 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
9925488 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
10216156 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
10670598 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
Measurement of International Differences in Well-Being
衡量福祉的国际差异
- 批准号:
8337385 - 财政年份:2011
- 资助金额:
$ 50.45万 - 项目类别:
Measurement of International Differences in Well-Being
衡量福祉的国际差异
- 批准号:
8531125 - 财政年份:2011
- 资助金额:
$ 50.45万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)