A Federated Galaxy for user-friendly large-scale cancer genomics research
用于用户友好的大规模癌症基因组学研究的联邦星系
基本信息
- 批准号:10245142
- 负责人:
- 金额:$ 76.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-11 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AwarenessBenchmarkingCenters for Disease Control and Prevention (U.S.)CommunitiesCommunity DevelopmentsComplementDataData AnalysesData AnalyticsData CommonsData ScientistData SetData SourcesData StoreDevelopmentDisciplineDiseaseGalaxyGenomic Data CommonsGenomicsHealthHealth SciencesIndividualInformaticsInfrastructureInternetKnowledgeLanguageLeadLifeLocationMalignant NeoplasmsMapsMetadataMinorityNamesOnline SystemsOregonOutputPharmaceutical PreparationsPhenotypePlayPrivatizationProteomicsReportingResearchResearch PersonnelResourcesRunningScientistServicesStandardizationSystemTechnologyTimeUniversitiesVariantVisualizationWorkanalytical methodanticancer researchcancer genomicscancer health disparitycloud basedcloud platformcomputational platformcomputing resourcescostdata exchangedata resourcedata standardsdesigndistributed datadrug response predictionempoweredflexibilitygenomic datagenomics cloudmachine learning algorithmmachine learning methodmultiple omicsnext generationphenotypic dataprecision oncologyprediction algorithmresponseskillstooltranscriptome sequencingtumoruser-friendlyweb interface
项目摘要
Project Summary
Cancer research is now a data-driven discipline, but only a minority of cancer researchers are data scientists. This severely restricts our ability to effectively study and cure the disease. The far reaching significance of our project is in federating disparate data and computational resources in order to provide a unifying analysis platform for computational cancer research.
We will extend the popular scientific workbench Galaxy (https://galaxyproject.org) so that it can integrate with distributed data and compute resources used and needed by cancer researchers, including those resources in the NCI Cancer Research Data Commons (NCR DC). Our Federated Galaxy system will allow users to seamlessly access NCR DC data across multiple resources. It will support multiple analysis scenarios tuned to skills and computational requirements of individual researchers.
The aims of this project are:
Aim 1. Extend Galaxy for working with distributed cancer genomics and phenotypic data. This will enable Galaxy users to access both public and private cancer data regardless of their actual physical location. Best-practice approaches will be used for accessing restricted datasets.
Aim 2. Enhance Galaxy for context-aware, distributed cancer genomics analyses using shared workflow representations. This will enable Galaxy users to run genomics analyses on different clouds, ultimately reducing the time, cost, and data transfer associated with analyses.
Aim 3. Apply Federated Galaxy to precision oncology research. Workflows developed in this aim will leverage the technologies in Aims 1 and 2 to benchmark machine learning algorithms for predicting tumor phenotype and drug response. Interactive reports will summarize benchmarking results and utilize ITCR visualizations for deep dives into results.
Our system will provide a singular access point to distributed cancer datasets and will enable these data to be analyzed within a single portal in a way that satisfies multiple analysis scenarios and utilizes diverse computational resources. Finally, a cloud-centric Galaxy built for the NCR DC will substantially grow the community of users working with the GDC and the NCR DC. This is because Galaxy brings with itself a vibrant world-wide community of users and developers, which numbers tens of thousands of scientists. These individuals will help to tune the GDC and other resources within the NCR DC to the needs of real-life analysis scenarios and will enrich the set of tools accessible to cancer researchers.
项目摘要
癌症研究现在是一个数据驱动的学科,但只有少数癌症研究人员是数据科学家。这严重限制了我们有效研究和治疗这种疾病的能力。我们的项目的深远意义在于联合不同的数据和计算资源,以便为计算癌症研究提供统一的分析平台。
我们将扩展流行的科学工作台Galaxy(galaxyproject.org),以便它可以与癌症研究人员使用和需要的分布式数据和计算资源集成,包括NCI癌症研究数据共享(NCR DC)中的资源。我们的Federated Galaxy系统将允许用户跨多个资源无缝访问NCR DC数据。它将支持多个分析方案,以适应各个研究人员的技能和计算要求。
该项目的目标是:
目标1.扩展Galaxy,用于处理分布式癌症基因组学和表型数据。这将使Galaxy用户能够访问公共和私人癌症数据,而无论其实际物理位置如何。将采用最佳做法办法访问限制性数据集。
目标2.使用共享工作流程表示增强Galaxy的上下文感知、分布式癌症基因组学分析。这将使Galaxy用户能够在不同的云上运行基因组学分析,最终减少与分析相关的时间,成本和数据传输。
目标3。将Federated Galaxy应用于精准肿瘤学研究。为此目的开发的工作流程将利用目的1和2中的技术,对机器学习算法进行基准测试,以预测肿瘤表型和药物反应。交互式报告将总结基准测试结果,并利用ITCR可视化技术深入研究结果。
我们的系统将为分布式癌症数据集提供一个单一的访问点,并将使这些数据能够在一个单一的门户网站内进行分析,以满足多种分析场景,并利用不同的计算资源。最后,为NCR DC构建的以云为中心的Galaxy将大大增加与GDC和NCR DC合作的用户社区。这是因为Galaxy带来了一个充满活力的全球用户和开发人员社区,其中有数万名科学家。这些人将帮助调整GDC和NCR DC中的其他资源,以满足现实分析场景的需求,并将丰富癌症研究人员可用的工具集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Goecks其他文献
Jeremy Goecks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Goecks', 18)}}的其他基金
Scalable multi-mode education to increase use of ITCR tools by diverse analysts
可扩展的多模式教育,以增加不同分析师对 ITCR 工具的使用
- 批准号:
10669864 - 财政年份:2020
- 资助金额:
$ 76.23万 - 项目类别:
Scalable multi-mode education to increase use of ITCR tools by diverse analysts
可扩展的多模式教育,以增加不同分析师对 ITCR 工具的使用
- 批准号:
10250548 - 财政年份:2020
- 资助金额:
$ 76.23万 - 项目类别:
Scalable multi-mode education to increase use of ITCR tools by diverse analysts
可扩展的多模式教育,以增加不同分析师对 ITCR 工具的使用
- 批准号:
10075552 - 财政年份:2020
- 资助金额:
$ 76.23万 - 项目类别:
A Federated Galaxy for user-friendly large-scale cancer genomics research
用于用户友好的大规模癌症基因组学研究的联邦星系
- 批准号:
10908030 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Implementing the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL)
实施基因组数据科学分析、可视化和信息学实验室空间 (AnVIL)
- 批准号:
10220581 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
Implementing the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL)
实施基因组数据科学分析、可视化和信息学实验室空间 (AnVIL)
- 批准号:
10405959 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
A Federated Galaxy for user-friendly large-scale cancer genomics research
用于用户友好的大规模癌症基因组学研究的联邦星系
- 批准号:
10461143 - 财政年份:2018
- 资助金额:
$ 76.23万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 76.23万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 76.23万 - 项目类别:
Continuing Grant