Image Features for Brain Phenotypes
大脑表型的图像特征
基本信息
- 批准号:10244977
- 负责人:
- 金额:$ 26.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:18 year old3-DimensionalAddressAgeAlgorithmsAnatomyAnisotropyAwarenessBase of the BrainBostonBrainBrain DiseasesBrain imagingCharacteristicsChildChildhoodClassificationClinicClinicalCollaborationsComputer softwareCorpus CallosumCounselingData SourcesDatabasesDetectionDiagnosisDiffuseDiffusion Magnetic Resonance ImagingDiseaseEducational process of instructingFiberGenderGoalsGrantHospitalsImageImage AnalysisInstitutionKnowledgeLocationMRI ScansMachine LearningMagnetic Resonance ImagingMassachusettsMedical ImagingMetabolic DiseasesMethodologyMethodsModernizationOutcomePatientsPediatric HospitalsPerformancePhenotypePopulationProblem SolvingRadiology SpecialtyRare DiseasesRecordsResearchResolutionSliceSystemTechniquesTechnologyTestingTimeTranslatingWomanWorkWorkloadbasebrain abnormalitiesbrain malformationclinical databaseclinical imagingcomputer frameworkexperienceimage archival systemlarge datasetsmachine learning algorithmmachine learning methodmalformationneuroimagingnovelopen sourceparallel computerradiological imagingradiologistresearch clinical testingsoftware systemssupport toolsthree dimensional structuretooltractographytwo-dimensionalwhite matter
项目摘要
Project Summary/Abstract TR&D 3 Image Features for Brain Phenotypes
Modern brain imaging provides vastly more information than before. While this information is of tremendous
benefit to patients, the radiologist’s workload has increased with higher resolutions and increasing numbers of
images to interpret. Furthermore, rare brain malformations, rare diseases, and brain abnormalities that are
diffusely manifested or are symmetric across hemispheres can pose particular challenges to the radiologist.
Despite the rich information content of hospital image archives, there is no clinically available way to
automatically leverage the large volume of prior cases at the same hospital to aid radiological reads.
Toward the long-term goal of developing machine learning systems for clinically assisted reads, the Image
Features for Brain Phenotypes TR&D will investigate 3D brain image features for description of healthy versus
non-healthy brain phenotypes. Image features are representations of image contents that have the following
advantages: they are compact, informative, facilitate fast search, and enable machine learning analyses of
large datasets. Even in an era of massively parallel computers, these advantages enable clinical problem
solving that would otherwise be infeasible in practice due to problem size and complexity.
We hypothesize that similarity in image features is strongly correlated with similarity in underlying disease, and
that this can be used to build novel tools to support radiological decisions. The project is organized into three
specific aims: (1) Robust image features for brain phenotypes that will develop features and associated
algorithms for 3D structural images, (2) Connectivity-based brain phenotypes that will investigate novel
features for diffusion MRI images, and (3) Feature-based brain phenotypes for the clinic that will deploy and
validate methods in clinical MRI databases. We will focus on the specific application of radiological images of
children 4 to 18 years old and we will leverage three large clinical MRI databases from Boston hospitals.
Overall, our proposed feature-based image analysis technologies have the potential to identify image
phenotypes describing particular malformations for clinically aided reads or radiological teaching, to identify
similar cases to aid patient counseling, and to enable detection of population substructure in disease. Our team
has significant successful experience in extracting valuable knowledge from clinically acquired data sources
and in disseminating open software for such research. The expected outcome of the proposed project is a
state-of-the-art open source pilot system for clinically aided reads.
项目摘要/摘要TR&D 3脑表型的图像特征
现代大脑成像提供了比以前更多的信息。虽然这些信息是巨大的
为了使患者受益,放射科医生的工作量随着更高的分辨率和越来越多的
图像解读此外,罕见的脑畸形,罕见的疾病和脑异常,
弥散性表现或对称于半球可能对放射科医师提出特殊的挑战。
尽管医院影像档案的信息内容丰富,但临床上还没有可用的方法来
自动利用同一医院的大量先前病例来辅助放射学读取。
为了实现为临床辅助读取开发机器学习系统的长期目标,Image
脑表型特征TR&D将研究3D脑图像特征,用于描述健康与
不健康的大脑表型。图像要素是具有以下特征的图像内容的表示形式
优点:它们结构紧凑,信息丰富,便于快速搜索,并支持机器学习分析,
大型数据集。即使在大规模并行计算机的时代,这些优势也能解决临床问题。
解决由于问题的大小和复杂性而在实践中不可行的问题。
我们假设图像特征的相似性与潜在疾病的相似性密切相关,
这可以用来建立新的工具来支持放射学决策。该项目分为三个部分
具体目标:(1)大脑表型的稳健图像特征,其将开发特征和相关的
3D结构图像的算法,(2)基于连接性的大脑表型,将研究新的
扩散MRI图像的特征,以及(3)将部署的诊所的基于脑的表型,
在临床MRI数据库中验证方法。我们将重点介绍放射性图像的具体应用,
我们将利用波士顿医院的三个大型临床MRI数据库。
总的来说,我们提出的基于特征的图像分析技术有潜力识别图像
描述特定畸形的表型,用于临床辅助读取或放射学教学,以识别
类似的情况下,以帮助病人咨询,并使检测人口结构的疾病。我们的团队
在从临床获取的数据源中提取有价值的知识方面具有重要的成功经验
并为此类研究传播开放软件。拟议项目的预期成果是
用于临床辅助读取的最先进的开源试点系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William M. Wells其他文献
Surgical navigation in the open MRI.
开放式 MRI 中的手术导航。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
A. Nabavi;Dave Gering;D. Kacher;I. Talos;William M. Wells;Ron Kikinis;P. Black;F. Jolesz - 通讯作者:
F. Jolesz
Performance Issues in Shape Classification
形状分类中的性能问题
- DOI:
10.1007/3-540-45786-0_44 - 发表时间:
2002 - 期刊:
- 影响因子:3.6
- 作者:
Samson J. Timoner;Pollina Golland;R. Kikinis;M. Shenton;W. Grimson;William M. Wells;William M. Wells - 通讯作者:
William M. Wells
Investigation of Feature-Based Nonrigid Image Registration Using Gaussian Process
使用高斯过程的基于特征的非刚性图像配准研究
- DOI:
10.1007/978-3-658-29267-6_32 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Siming Bayer;Ute Spiske;Jie Luo;Tobias Geimer;William M. Wells;M. Ostermeier;Rebecca Fahrig;Arya Nabavi;Christoph Bert;Ilker Eyüpoglo;Andreas K. Maier - 通讯作者:
Andreas K. Maier
Object modeling using tomography and photography
使用断层扫描和摄影进行对象建模
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Dave Gering;William M. Wells - 通讯作者:
William M. Wells
William M. Wells的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William M. Wells', 18)}}的其他基金
Information Processing in Medical Imaging (IPMI 2013)
医学影像信息处理 (IPMI 2013)
- 批准号:
8529916 - 财政年份:2013
- 资助金额:
$ 26.3万 - 项目类别:
Templates and Tools for Pediatric Neuroanatomical Analysis
儿科神经解剖分析的模板和工具
- 批准号:
7942041 - 财政年份:2009
- 资助金额:
$ 26.3万 - 项目类别:
Templates and Tools for Pediatric Neuroanatomical Analysis
儿科神经解剖分析的模板和工具
- 批准号:
7738190 - 财政年份:2009
- 资助金额:
$ 26.3万 - 项目类别:
MUTUAL INFORMATION BASED IMAGE PROCESSING FOR FMRI
基于互信息的 FMRI 图像处理
- 批准号:
6232385 - 财政年份:2001
- 资助金额:
$ 26.3万 - 项目类别:
MUTUAL INFORMATION BASED IMAGE PROCESSING FOR FMRI
基于互信息的 FMRI 图像处理
- 批准号:
6522771 - 财政年份:2001
- 资助金额:
$ 26.3万 - 项目类别:
相似海外基金
REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
- 批准号:
2349771 - 财政年份:2024
- 资助金额:
$ 26.3万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 26.3万 - 项目类别:
Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
- 批准号:
23H00232 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
- 批准号:
23H01489 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
- 批准号:
2216835 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
- 批准号:
23H01882 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
- 批准号:
EP/X018385/1 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
- 批准号:
10635210 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
- 批准号:
2320636 - 财政年份:2023
- 资助金额:
$ 26.3万 - 项目类别:
Standard Grant