TRD 2 - Deep Learning

TRD 2 - 深度学习

基本信息

  • 批准号:
    10090282
  • 负责人:
  • 金额:
    $ 28.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-06 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

The goals of the Deep Learning TRD of the Advanced Technologies for the National Center for Image-Guided Therapy (AT-NCIGT) are to investigate revolutionary advances in deep learning (DL) in the context of image-guided therapy (IGT) of brain, prostate, and lung cancer, and to develop tools that can be used by the broader IGT research community. The general theme of our research addresses difficulties associated with creation of training data, which is a significant impediment to the application of DL to medical images. While DL has had many successes in image-based classification or segmentation tasks, the methods used are fully supervised, i.e., very large amounts of accurately annotated training data are needed to achieve best performance. Currently, expert annotation is expensive and laborious in the case of medical images because accurate segmentation of 3D structures requires manual or semi-automatic labeling of thousands of voxels per image. Concurrently, large unlabeled or weakly-labeled data sets are becoming available. For example, the PACS system of a large hospital might contain tens of millions of scans, but determining accurate disease labels is difficult. There are currently two promising DL approaches that can be used to address this problem, weakly-supervised learning (where some labels are absent or otherwise imperfect) and transfer learning (which leverages labeled data sets that are in some ways similar). The current situation is further exacerbated by a lack of machine readable metadata, and of methods and tools to support curation of the imaging (e.g., Magnetic Resonance Imaging (MRI)) and clinical data, alongside annotations and analysis results within a single data model. The latter leads to fragmentation of data, and non-standard and heterogeneous metadata. We address these problems by 1) Developing new information theoretic technology for weakly-supervised deep learning, 2) developing novel training strategies for deep learning for cancer characterization for transperineal in-bore MRI-guided prostate biopsy, and 3) developing an infrastructure for curating imaging data for deep learning. The results of this TRD will be DL algorithms, the resulting models, and tools for annotation and organizing machine-readable metadata that are designed to enable IGT cancer research for the prostate, the lung, and the brain applications.
国家先进技术中心深度学习TRD的目标 图像引导治疗(AT-NCIGT)旨在研究深度学习(DL)的革命性进展, 脑、前列腺和肺癌的图像引导治疗(IGT)的背景,并开发工具, 可以被更广泛的IGT研究社区使用。我们研究的总主题是 与创建训练数据有关的困难,这是应用 医学图像。虽然DL在基于图像的分类或分割方面取得了许多成功, 任务,所使用的方法是完全监督,即,大量精确注释的训练 需要数据来实现最佳性能。目前,专家注释是昂贵和费力的, 医学图像的情况下,因为3D结构的准确分割需要手动或 半自动标记每个图像的数千个体素。同时,大的未标记或 弱标记的数据集正在变得可用。例如,大型医院的PACS系统 可能包含数千万次扫描,但很难确定准确的疾病标签。有 目前有两种有前途的DL方法可以用来解决这个问题,弱监督 学习(其中一些标签不存在或不完美)和迁移学习(利用 在某些方面相似的标记数据集)。目前的局势因缺乏 机器可读元数据,以及支持成像管理的方法和工具(例如,磁 磁共振成像(MRI))和临床数据,以及注释和分析结果在一个单一的 数据模型后者导致数据碎片化,以及元数据不标准和异构。 我们解决这些问题,1)发展新的信息理论技术, 弱监督深度学习,2)为癌症深度学习开发新的训练策略 经会阴孔内MRI引导前列腺活检的表征,以及3)开发基础设施 for curating策展imaging成像data数据for deep深learning学习.此TRD的结果将是DL算法, 模型,以及用于注释和组织机器可读元数据的工具, IGT癌症研究在前列腺、肺和脑中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William M. Wells其他文献

Surgical navigation in the open MRI.
开放式 MRI 中的手术导航。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Nabavi;Dave Gering;D. Kacher;I. Talos;William M. Wells;Ron Kikinis;P. Black;F. Jolesz
  • 通讯作者:
    F. Jolesz
Performance Issues in Shape Classification
形状分类中的性能问题
  • DOI:
    10.1007/3-540-45786-0_44
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Samson J. Timoner;Pollina Golland;R. Kikinis;M. Shenton;W. Grimson;William M. Wells;William M. Wells
  • 通讯作者:
    William M. Wells
Investigation of Feature-Based Nonrigid Image Registration Using Gaussian Process
使用高斯过程的基于特征的非刚性图像配准研究
  • DOI:
    10.1007/978-3-658-29267-6_32
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siming Bayer;Ute Spiske;Jie Luo;Tobias Geimer;William M. Wells;M. Ostermeier;Rebecca Fahrig;Arya Nabavi;Christoph Bert;Ilker Eyüpoglo;Andreas K. Maier
  • 通讯作者:
    Andreas K. Maier
Object modeling using tomography and photography
使用断层扫描和摄影进行对象建模

William M. Wells的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William M. Wells', 18)}}的其他基金

TRD 2 - Deep Learning
TRD 2 - 深度学习
  • 批准号:
    10540781
  • 财政年份:
    2021
  • 资助金额:
    $ 28.59万
  • 项目类别:
TRD 2 - Deep Learning
TRD 2 - 深度学习
  • 批准号:
    10326348
  • 财政年份:
    2021
  • 资助金额:
    $ 28.59万
  • 项目类别:
Information Processing in Medical Imaging (IPMI 2013)
医学影像信息处理 (IPMI 2013)
  • 批准号:
    8529916
  • 财政年份:
    2013
  • 资助金额:
    $ 28.59万
  • 项目类别:
Templates and Tools for Pediatric Neuroanatomical Analysis
儿科神经解剖分析的模板和工具
  • 批准号:
    7942041
  • 财政年份:
    2009
  • 资助金额:
    $ 28.59万
  • 项目类别:
Templates and Tools for Pediatric Neuroanatomical Analysis
儿科神经解剖分析的模板和工具
  • 批准号:
    7738190
  • 财政年份:
    2009
  • 资助金额:
    $ 28.59万
  • 项目类别:
MUTUAL INFORMATION BASED IMAGE PROCESSING FOR FMRI
基于互信息的 FMRI 图像处理
  • 批准号:
    6232385
  • 财政年份:
    2001
  • 资助金额:
    $ 28.59万
  • 项目类别:
MUTUAL INFORMATION BASED IMAGE PROCESSING FOR FMRI
基于互信息的 FMRI 图像处理
  • 批准号:
    6522771
  • 财政年份:
    2001
  • 资助金额:
    $ 28.59万
  • 项目类别:
Image Features for Brain Phenotypes
大脑表型的图像特征
  • 批准号:
    10244977
  • 财政年份:
    1998
  • 资助金额:
    $ 28.59万
  • 项目类别:
DVMT OF IMAGE REGISTRATION FOR NEUROSURGERY
神经外科图像配准的 DVMT
  • 批准号:
    6123554
  • 财政年份:
    1998
  • 资助金额:
    $ 28.59万
  • 项目类别:
Image Features for Brain Phenotypes
大脑表型的图像特征
  • 批准号:
    10463703
  • 财政年份:
    1998
  • 资助金额:
    $ 28.59万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.59万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了