Remote computational phenotyping of behavioral and affective dynamics in major depression
重度抑郁症行为和情感动态的远程计算表型
基本信息
- 批准号:10248549
- 负责人:
- 金额:$ 81.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAffectiveAmygdaloid structureAnhedoniaAnteriorBehaviorBehavioralBehavioral AssayBehavioral ModelBiological AssayBrainCellular PhoneClinicalCommunitiesComplementComputer ModelsCorpus striatum structureDataData CollectionDecision MakingDimensionsDiseaseEnvironmentFunctional Magnetic Resonance ImagingHeterogeneityIndividualInterventionLearningLifeLinkMRI ScansMagnetic Resonance ImagingMajor Depressive DisorderMapsMeasuresMental DepressionMental disordersModelingMoodsNeural Network SimulationPatient Self-ReportPatientsPhenotypePoliciesPositive ValencePrevalenceProcessPsychological reinforcementReportingResearch Domain CriteriaRestRewardsRiskSamplingStatistical ModelsSymptomsSystemTestingTimebasebehavioral phenotypingcommon symptomcostdepressive symptomseffective therapyexperienceimprovedlong short term memoryneural circuitneuroimagingrecruitrecurrent neural networksimulationsleep qualitysuccesstheories
项目摘要
PROJECT SUMMARY / ABSTRACT
Major depression is a highly debilitating disorder affecting over 300 million people worldwide. Treatment
assignment can involve a lengthy trial-and-error process complicated by symptom heterogeneity. The
Research Domain Criteria (RDoC) matrix provides a framework for investigating psychiatric disorders that
integrates across multiple levels of analysis. Depressive symptoms are closely linked to the RDoC Positive
Valence Systems (PVS) domain, but it is unknown how PVS constructs relate to common depressive
symptoms including low mood, anhedonia, and apathy. Computational probes of behavioral and affective
dynamics show great promise as a means of ‘computationally phenotyping’ individuals and providing a way to
validate PVS constructs in relation to symptom heterogeneity. The ubiquity of smartphones makes them an
ideal platform for remote testing. We propose to collect longitudinal data using smartphones for three ‘gamified’
tasks that measure risky decision making, probabilistic reinforcement learning, and reward-effort trade-offs and
concurrent fluctuations in affective state. We will establish the reliability of remotely collected computational
assays of behavioral and affective dynamics for understanding heterogeneity in depressive symptoms. We will
first test a community sample (n=200) both in the lab and remotely by smartphone to verify that behavioral and
affective computational parameters have the same relationship to depressive symptoms (low mood,
anhedonia, and apathy) in both environments (Aim 1). We will then recruit a large sample of patients with
moderate depressive symptoms (n=400) and test them remotely using smartphones for up to 12 months (Aim
2). We will test whether behavioral and affective computational parameters are related to changes in
depressive symptoms over time. We will also use data-driven recurrent neural network approaches to identify
additional features of our data related to depressive symptoms. Finally, we will collect MRI scans and in-lab
data in a subsample of patients (n=200) from Aim 2 and ask whether reward sensitivity and reward prediction
error, features of all three tasks, map onto consistent neural circuitry and depressive symptoms (Aim 3). We
will test for a mapping between depression subtypes defined by brain network connectivity, behavioral and
affective computational parameters, and depressive symptoms. Using computational models, we can bridge
between levels of circuits, behavior, and self-report, and test for a mapping onto heterogeneity in symptoms,
enhancing our understanding of RDoC constructs and paving the way for more effective and timely
interventions to treat depression.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robb Brooks Rutledge其他文献
Robb Brooks Rutledge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robb Brooks Rutledge', 18)}}的其他基金
Remote computational phenotyping of behavioral and affective dynamics in major depression
重度抑郁症行为和情感动态的远程计算表型
- 批准号:
10674718 - 财政年份:2020
- 资助金额:
$ 81.54万 - 项目类别:
Remote computational phenotyping of behavioral and affective dynamics in major depression
重度抑郁症行为和情感动态的远程计算表型
- 批准号:
10449259 - 财政年份:2020
- 资助金额:
$ 81.54万 - 项目类别:
Remote computational phenotyping of behavioral and affective dynamics in major depression
重度抑郁症行为和情感动态的远程计算表型
- 批准号:
10059029 - 财政年份:2020
- 资助金额:
$ 81.54万 - 项目类别:
The neurobiology of human reinforcement learning throughout the lifespan
人类整个生命周期强化学习的神经生物学
- 批准号:
7513407 - 财政年份:2007
- 资助金额:
$ 81.54万 - 项目类别:
The neurobiology of human reinforcement learning throughout the lifespan
人类整个生命周期强化学习的神经生物学
- 批准号:
7407852 - 财政年份:2007
- 资助金额:
$ 81.54万 - 项目类别:
The neurobiology of human reinforcement learning throughout the lifespan
人类整个生命周期强化学习的神经生物学
- 批准号:
7674573 - 财政年份:2007
- 资助金额:
$ 81.54万 - 项目类别:
相似海外基金
Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
- 批准号:
EP/Y03726X/1 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
- 批准号:
EP/Z000025/1 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
- 批准号:
BB/X014673/1 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
- 批准号:
MR/Y011627/1 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
- 批准号:
AH/V015834/2 - 财政年份:2023
- 资助金额:
$ 81.54万 - 项目类别:
Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
- 批准号:
2888014 - 财政年份:2023
- 资助金额:
$ 81.54万 - 项目类别:
Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
- 批准号:
2889627 - 财政年份:2023
- 资助金额:
$ 81.54万 - 项目类别:
Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
- 批准号:
23K19678 - 财政年份:2023
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Research Activity Start-up