The role of cytoskeletal mechanotransduction and its regulation by Filamin C in pathological cardiac hypertrophy
病理性心脏肥大中细胞骨架机械传导的作用及其 Filamin C 的调节
基本信息
- 批准号:10249965
- 负责人:
- 金额:$ 2.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-07 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAnisotropyAtomic Force MicroscopyAttenuatedCardiacCardiac MyocytesCell membraneClinicalComplexCytoskeletal ProteinsCytoskeletonDependenceDeveloped CountriesDevelopmentDilated CardiomyopathyFibroblastsFluorescence Resonance Energy TransferFunctional disorderGene ExpressionGene Expression RegulationGenesGeneticGoalsGrowthHeartHeart DiseasesHeart HypertrophyHeart failureHypertrophic CardiomyopathyHypertrophyIsotropyLinkMeasurementMeasuresMechanicsMediatingMediator of activation proteinMedicalMembraneMicrofilamentsMolecularMusMuscle CellsMutationMyocardialMyocardial dysfunctionMyocardiumMyofibrilsNeonatalOutputPathogenesisPathologicPathway interactionsPeripheralPlayPreventionProteinsProteomicsRadialRegulationResearch Project GrantsRiskRoleSarcomeresSignal TransductionStimulusStressStructureSubcellular structureTestingTissuesTraction Force MicroscopyTransducersTransgenic MiceVentricularVinculinWorkbasecellular transductionclinically relevantexperimental studyfilamininherited cardiomyopathyloss of functionmechanical forcemechanical loadmechanotransductionmortalitymouse modelnanoscaleneonatal micenovelnovel therapeuticspreventresponsesensorsudden cardiac deathtooltranscriptomicstransmission processventricular hypertrophy
项目摘要
Project Summary
Heart disease continues to be a global medical challenge and a major cause of mortality. Many forms of heart
disease are accompanied by hypertrophy and remodeling of the myocardium that increases the risk of sudden
cardiac death, making ventricular hypertrophy a leading predictor of contractile dysfunction and progressive heart
failure. Inherited cardiomyopathies represent a significant subset of hypertrophic heart disease, the two primary
forms being hypertrophic and dilated cardiomyopathy (HCM & DCM, respectively). HCM is characterized by a
concentric hypertrophy (thickening) of cardiomyocytes (CMs) and ventricular walls leading to diastolic
dysfunction, while DCM is characterized by eccentric CM hypertrophy (lengthening) and chamber dilation with
systolic dysfunction. Concentric HCM remodeling is often associated with sarcomeric mutations that confer a
gain of mechanical function, whereas dilated DCM remodeling is more typically associated with loss-of-function
sarcomeric mutations or mutations in genes encoding cytoskeletal proteins that may mediate
mechanotransmission or mechanotransduction in CMs. Our overall hypothesis is that differential hypertrophic
responses are regulated by the anisotropy of mechanical force transmission and external loading relative to the
myofibrillar axis such that mechanical alterations redistribute the axial versus radial components of CM stress
and strain (i.e., change the anisotropy of CM mechanics) are converted into signals that differentiate anisotropic
CM growth via distinct mechanosensors and mechanotransducers. Molecular complexes in the membrane and
cortical cytoskeleton of CMs are thought to serve as peripheral mechanosensors or transducers that likely
mediate differential hypertrophic responses. One such structure is the costamere, which links the sarcomere to
the cell membrane and contains vinculin and filamin C (FLNC). A loss of vinculin in mouse hearts was found to
cause DCM which was preceded by a reduction of cortical membrane stiffness that led to an increase in radial
systolic strain but not axial systolic strain in CMs. It is unknown if a loss of FLNC in the heart also dysregulates
cortical stiffness and anisotropy of systolic strain in CMs, but it has been shown that a loss of filamin in fibroblasts
reduces the anisotropy of intracellular force distributions in response to applied external mechanical loading. My
goal in this project is to employ a new mouse model with cardiac-specific and inducible FLNC deletion
and integrate nanoscale measurements of cytoskeletal mechanics, costameric loading distributions,
and mechanosensitive gene expression to test the hypothesis that FLNC regulates the relationship
between cortical cytoarchitecture, the anisotropy of intra-myocyte strain, and the transduction
mechanical stimuli into differential growth that underpins DCM. Using FLNC-null CMs, I will elucidate the
dependence of the anisotropy of forces in the cortical cytoskeleton on hypertrophic signaling in CMs and inform
novel mechanobiological targets for the treatment or prevention hypertrophic heart disease.
项目摘要
心脏病仍然是一个全球性的医学挑战和死亡的主要原因。多种形式的心脏
疾病伴随着心肌肥厚和重塑,增加了突发性心脏病的风险。
心源性死亡,使心室肥大成为收缩功能障碍和心脏进展的主要预测因素
失败遗传性心肌病是肥厚性心脏病的一个重要亚型,
肥厚型和扩张型心肌病(分别为HCM和DCM)。HCM的特点是
心肌细胞(CM)和心室壁的向心性肥大(增厚)导致舒张
扩张型心肌病的特征是离心性CM肥大(延长)和室扩张,
收缩功能障碍同心HCM重塑通常与肌节突变有关,
获得机械功能,而扩张型DCM重塑更典型地与功能丧失相关
肌节突变或编码细胞骨架蛋白的基因突变,
在CM中的机械传递或机械转导。我们的总体假设是,
响应由机械力传递的各向异性和外部载荷相对于
肌原纤维轴,使得机械改变重新分配CM应力的轴向与径向分量
和应变(即,改变CM力学的各向异性)被转换成区分各向异性的信号
通过不同的机械传感器和机械换能器的CM生长。膜中的分子复合物,
CM的皮质细胞骨架被认为是外周机械传感器或换能器,
介导不同的肥大反应。一种这样的结构是肋节,其将肌节连接到
细胞膜上含有黏着斑蛋白和细丝蛋白C(FLNC)。发现小鼠心脏中纽蛋白的丢失
导致DCM,之前皮质膜刚度降低,导致径向增加,
收缩期应变,而非轴向收缩期应变。目前尚不清楚心脏FLNC的缺失是否也会导致
皮质硬度和各向异性的收缩应变在CM,但它已被证明是损失细丝蛋白在成纤维细胞
降低了细胞内力分布对所施加的外部机械载荷的响应的各向异性。我
本项目的目标是采用一种新的心脏特异性和可诱导FLNC缺失的小鼠模型
并整合细胞骨架力学,costameric加载分布,
和机械敏感性基因表达来检验FLNC调节这种关系的假设。
皮质细胞结构、肌细胞内应变的各向异性和转导之间的关系
机械刺激到差异生长,支撑DCM。使用FLNC空CM,我将阐明
皮质细胞骨架中各向异性力对CM中肥大信号的依赖性和信息
用于治疗或预防肥大性心脏病的新的机械生物学靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH D. POWERS其他文献
JOSEPH D. POWERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH D. POWERS', 18)}}的其他基金
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10877387 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10482405 - 财政年份:2021
- 资助金额:
$ 2.68万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10283562 - 财政年份:2021
- 资助金额:
$ 2.68万 - 项目类别:
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Research Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Continuing Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
- 批准号:
2740295 - 财政年份:2022
- 资助金额:
$ 2.68万 - 项目类别:
Studentship