Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
基本信息
- 批准号:10482405
- 负责人:
- 金额:$ 10.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-06 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAtomic Force MicroscopyAttenuatedBiological MarkersBiophysicsCardiacCardiac MyocytesCardiomyopathiesCellsClinicalCytoskeletal ProteinsCytoskeletonDefectDevelopmentDiagnosisDiastoleDilated CardiomyopathyEquilibriumExtracellular MatrixFibroblastsFluorescence Resonance Energy TransferFunctional disorderGene ExpressionGene Expression ProfileGene Expression RegulationGene TargetingGenesGeneticGeometryGoalsHeartHeart DiseasesHeart failureHomologous GeneHumanHuman PathologyHypertrophyImageIn VitroInvestigationKnock-outKnockout MiceLengthLifeLinkMaintenanceMeasurementMechanicsMediatingMentorsMicrofilamentsModelingMolecularMusMutationMyocardiumPathogenicityPathologicPathway interactionsPatientsPhasePhenotypePlayProteinsReportingResearchRoleSarcomeresSignal PathwayStimulusStressStructural defectStructureSubcellular structureSystoleTechniquesTestingTissuesTranslatingVariantVentricularVentricular RemodelingX ray diffraction analysisbasebiomechanical testbiophysical techniquesdesignextracellularfilaminfunctional lossheart cellin vitro Modelinduced pluripotent stem cell derived cardiomyocytesloss of function mutationmechanical forcemechanical loadmechanical signalmechanical stimulusmouse modelmulti-scale modelingnovelnovel therapeuticspost-doctoral trainingpreventresponsesensortooltranscriptomicstransmission processventricular hypertrophy
项目摘要
PROJECT SUMMARY / ABSTRACT
A common and deadly form of familial heart disease is dilated cardiomyopathy (DCM), which is typically
characterized by adverse cellular and ventricular remodeling and systolic dysfunction. DCM is often associated
with loss-of-function mutations in genes encoding sarcomeric or cytoskeletal proteins. Mechanotransmission and
mechanosignaling in cardiomyocytes (CMs) rely on these protein networks, particularly in the costamere, which
provides a direct mechanical link between the extracellular matrix (ECM) and the Z-disk of the sarcomere. The
costamere may therefore regulate both ‘inside-out’ mechanotransmission (transmitting sarcomere-born forces
out to the ECM) and ‘outside-in’ mechanosignaling (transmitting/transducing extracellular mechanical signals
into the CM)—the dysfunction of either of which may be central to DCM progression. My overall hypothesis is
that the costamere and cortical cytoskeleton of cardiomyocytes provide key mechanosensitive protein networks
that regulate mechanical signalling pathways initiated by intracellular and extracellular forces, and that specific
defects in these structures inhibits their ability to transmit and transduce mechanical forces, causing contractile
dysfunction and pathological cell remodelling. Supporting this, the costamere protein Filamin C (FLNC) has
recently been implicated in a variety of human cardiomyopathies, including DCM. During my F32 postdoctoral
training, I used a new mouse model that exploits cardiac-specific and inducible homozygous FLNC deletion to
trigger rapid DCM development. I found that a loss of FLNC causes significant reductions in the tissue- and cell-
level contractility, as well as significant CM remodeling accompanied by a reduction in cortical cytoskeleton
stiffness. However, whether FLNC mutations in humans with DCM cause similar defects in cortex structure and
mechanics, systolic mechanotransmission, and mechanosensitive gene regulation requires further investigation.
Thus, the goal of my proposed research is to integrate quantitative subcellular-level structural and
biomechanical measurements with quantitative measurements of intracellular stress distributions and
hypertrophic gene expression patterns in response to intra- and extra-cellular mechanical perturbations
using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a patient-
specific FLNC-truncating mutation. To accomplish this, I will: (1) combine X-ray diffraction imaging, atomic
force microscopy, and multiscale computational modeling to test the hypothesis that a loss of FLNC disrupts
‘inside-out’ mechanotransmission of sarcomeric forces by dysregulating myofilament lattice geometry via altered
cortical cytoskeleton mechanics in murine CMs, (2) apply these biophysical methods and hypotheses to a new
human DCM model made from gene-edited hiPSC-CMs expressing a patient-specific FLNC-truncating variant,
and (3) combine FRET-based molecular tension sensor imaging, in-vitro extracellular mechanical loading
techniques, and quantitative transcriptomics to test the hypothesis that truncated FLNC dysregulates ‘outside-
in’ mechanosignaling in hiPSC-CMs and promotes DCM remodeling.
项目总结/摘要
家族性心脏病的一种常见且致命的形式是扩张型心肌病(DCM),其典型表现为:
其特征在于不利的细胞和心室重塑以及收缩功能障碍。DCM通常与
在编码肌节或细胞骨架蛋白的基因中具有功能丧失突变。机械传动和
心肌细胞(CM)中的机械信号依赖于这些蛋白质网络,特别是在肋节中,
在细胞外基质(ECM)和肌节的Z盘之间提供直接的机械连接。的
因此,肋节可以调节“由内而外”的机械传递(传递肌节产生的力
输出到ECM)和“由外向内”机械信号传导(传递/转导细胞外机械信号
进入CM)-其中任一者的功能障碍可能是DCM进展的中心。我的总体假设是
心肌细胞的肋节和皮层细胞骨架提供了关键的机械敏感蛋白网络
调节由细胞内和细胞外力引发的机械信号传导途径,
这些结构中的缺陷抑制了它们传递和传递机械力的能力,导致收缩,
功能障碍和病理性细胞重塑。支持这一点的是,Costamere蛋白Filamin C(FLNC)具有
最近被认为与包括DCM在内的多种人类心肌病有关。在我的F32博士后期间
在训练中,我使用了一种新的小鼠模型,该模型利用心脏特异性和可诱导的纯合FLNC缺失,
引发扩张型心肌病的快速发展我发现FLNC的缺失会导致组织和细胞的显著减少
水平的收缩力,以及伴随皮质细胞骨架减少的显著CM重塑
刚度然而,患有DCM的人的FLNC突变是否会导致皮质结构的类似缺陷,
力学、收缩机械传递和机械敏感性基因调控需要进一步研究。
因此,我提出的研究目标是整合定量亚细胞水平的结构和
生物力学测量,定量测量细胞内应力分布,
细胞内和细胞外机械扰动对肥大基因表达的影响
使用表达患者的人诱导多能干细胞衍生的心肌细胞(hiPSC-CM),
特异性FLNC截短突变。为了实现这一目标,我将:(1)联合收割机结合X射线衍射成像、原子能成像
力显微镜和多尺度计算模型来检验FLNC的损失破坏了
通过改变肌丝晶格几何结构失调的肌节力的“由内而外”机械传递
小鼠CM的皮质细胞骨架力学,(2)将这些生物物理学方法和假设应用于新的
由表达患者特异性FLNC截短变体的基因编辑的hiPSC-CM制成的人DCM模型,
(3)结合基于联合收割机的FRET分子张力传感器成像、体外细胞外机械负荷
技术和定量转录组学来检验截短的FLNC失调的假设,
在hiPSC-CM中的机械信号传导并促进DCM重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH D. POWERS其他文献
JOSEPH D. POWERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH D. POWERS', 18)}}的其他基金
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10877387 - 财政年份:2023
- 资助金额:
$ 10.47万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10283562 - 财政年份:2021
- 资助金额:
$ 10.47万 - 项目类别:
The role of cytoskeletal mechanotransduction and its regulation by Filamin C in pathological cardiac hypertrophy
病理性心脏肥大中细胞骨架机械传导的作用及其 Filamin C 的调节
- 批准号:
10249965 - 财政年份:2020
- 资助金额:
$ 10.47万 - 项目类别:
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 10.47万 - 项目类别:
Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 10.47万 - 项目类别:
Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 10.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 10.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 10.47万 - 项目类别:
Studentship