Learning to learn in structural biology with deep neural networks
通过深度神经网络学习结构生物学
基本信息
- 批准号:10256071
- 负责人:
- 金额:$ 33.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AreaBenchmarkingBindingDataData SetDrug DesignHumanImageIntelligenceLanguageLearningMedicineModelingMolecularNeurodegenerative DisordersOutcomePeptidesPlayProteinsResearchTechniquesTractionTranslatingWorkbiophysical modeldeep learningdeep neural networkdesignfunctional genomicsnovel strategiesnovel therapeuticsprogramsprotein structuresimulationstructural biologysuccesstool
项目摘要
Project Summary/Abstract
Deep learning is gaining traction across many elds as a powerful tool. In medicine, there
have been recent successes in drug design, predicting protein structure, and in functional genomics.
These successes have thus far been in areas where there are hundreds of thousands of data points
and deep learning in medicine is still limited by lack of large homongeous datasets.
This proposal focuses on applying a new kind of deep learning called meta-learning that mimics
the human-like ability to learn from few examples. The PI will establish a sustainable research
program on meta-learning by developing benchmark problems and datasets. The PI will further
explore meta-learning speci cally on peptide-protein structure and NMR spectra prediction. Due to
the imperative need for interpretability when using deep learning in medicine, a strong component
will be connecting biophysical modeling with the deep learning models.
The outcome of this work will be a demonstrated new approach to deep learning that can work
with little data. The PI will bring these research ideas together to design peptides that can bind
to intrinsically disordred proteins, a challenging but important task for curing neurodegenerative
diseases. This will be accomplished through meta-learning, molecular simulation, and iterative
peptide design.
项目摘要/摘要
深度学习作为一种强大的工具,正在许多领域获得吸引力。在医学方面,有
最近在药物设计、预测蛋白质结构和功能基因组学方面取得了成功。
到目前为止,这些成功都发生在拥有数十万个数据点的地区
而医学上的深度学习仍然受到缺乏大型同源数据集的限制。
这项提议的重点是应用一种新的深度学习,称为元学习,它模仿
从几个例子中学习的能力就像人类一样。PI将建立一个可持续的研究
通过开发基准问题和数据集的元学习计划。PI将进一步
探索元学习,特别是多肽-蛋白质结构和核磁共振谱预测。由于
在医学中使用深度学习时迫切需要可解释性,这是一个强大的组成部分
将生物物理模型与深度学习模型联系起来。
这项工作的结果将是一种示范的新的深度学习方法,这种方法可以奏效
几乎没有数据。PI将把这些研究想法结合在一起,设计出可以结合的多肽
治疗神经退行性变的一项具有挑战性但重要的任务
疾病。这将通过元学习、分子模拟和迭代来实现
多肽设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew David White其他文献
Andrew David White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew David White', 18)}}的其他基金
Learning to learn in structural biology with deep neural networks
通过深度神经网络学习结构生物学
- 批准号:
10027477 - 财政年份:2020
- 资助金额:
$ 33.95万 - 项目类别:
Learning to learn in structural biology with deep neural networks
通过深度神经网络学习结构生物学
- 批准号:
10437899 - 财政年份:2020
- 资助金额:
$ 33.95万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 33.95万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Continuing Grant