Solid-state nanopores for translational analysis of hyaluronan abundance and size distribution
用于透明质酸丰度和尺寸分布平移分析的固态纳米孔
基本信息
- 批准号:10255500
- 负责人:
- 金额:$ 30.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersBiologicalBiological ModelsBiological ProcessBiologyBuffersCaliberCell LineCharacteristicsChargeChondroitin SulfatesCommunitiesDataDegenerative polyarthritisDetectionDevelopmentDevicesDiagnosticDiseaseDisease ProgressionEnzyme-Linked Immunosorbent AssayEventExhibitsFoundationsFutureGlycobiologyGlycosaminoglycansGoalsHeparitin SulfateHumanHyaluronanHyaluronic AcidHydration statusImmunityIndividualInflammationJointsLabelLiquid substanceLubricationMass Spectrum AnalysisMeasurementMeasuresMethodsMolecularMolecular AnalysisMolecular WeightNaturePatientsPerformancePhysiologicalPlasmaPolymersPolysaccharidesPositioning AttributeProtocols documentationRenal carcinomaResearchResearch PersonnelRheumatoid ArthritisRheumatologyRoleSamplingSeveritiesSpecimenStagingStatistical MethodsStructureStructure-Activity RelationshipSynovial FluidSystemTechniquesTechnologyTestingTimeTissuesUrineUrologic CancerUrologic OncologyYanganalytical methodangiogenesisbiological systemscell motilitycohortcostfrontiergel electrophoresishuman subjectimmunoregulationimprovedin vivoinsightkidney cellmolecular diagnosticsmolecular markernanonanoporenanoscalenoninvasive diagnosisprognosticprognostic valuesingle moleculesolid statesugartooltranslational diagnosticsurinary
项目摘要
Project Summary
Hyaluronan (or hyaluronic acid, HA) is a ubiquitous biomolecule in vivo, with diverse roles ranging from
regulating key immunomodulatory functions to serving as the primary lubricating component of synovial fluid
(SF) in joints. Consequently, the accurate and comprehensive characterization of the molecule is critical to
improving our understanding of a broad range of biological processes and disease states, and may have
potential downstream applications in translational diagnostics. However, current technologies for assessing HA
have significant limitations. For example, techniques like the enzyme-linked immunosorbent assay (ELISA) are
adept at quantifying HA but ignore the critical structure-function relationship that makes HA molecular weight
(MW) a defining characteristic of its role. Approaches that are able to resolve HA MW have challenges that
include limited dynamic range (mass spectrometry) and large sample mass requirement (gel electrophoresis),
and generally lack the ability to determine concentration, necessitating multiple techniques for complete
assessment. To address this gap, we propose to employ solid-state (SS-) nanopores for robust molecular
analysis. In a SS-nanopore measurement, charged biomolecules are transported electrically through a
synthetic, nanometer-scale aperture. A current signature, or `event', is produced with each individual
translocation that can be measured and interpreted to denote characteristics about the threading molecule,
including MW. In addition, the overall rate of these events scales with molecular concentration, providing a
means by which to quantify analytes in solution. As a result, the platform is uniquely positioned to probe HA. In
Aim 1 of this project, we will first optimize SS-nanopore device performance for HA analysis by investigating
key experimental parameters systematically and expand our isolation protocols to also target inflammation-
marked HA specifically. Then, we will take advantage of the high sensitivity of our system to analyze HA in
biofluids that are conventionally challenging to probe. This will be accomplished by performing measurements
in the context of two disease states where HA is thought to have particular relevance: urinary HA in kidney
cancer (Aim 2) and plasma and urinary HA in rheumatoid arthritis (Aim 3). We hypothesize that the increased
sensitivity and quantitation offered by our SS-nanopore approach will enable correlations between HA
abundance/size distribution and disease progression to be identified and used for minimally- or non-invasive
diagnostics. This project will be conducted by a team of researchers that is positioned uniquely to succeed,
with expertise in SS-nanopore analysis, molecular diagnostics, glycobiology, statistical methods, urological
oncology, and rheumatology. The resulting technology will address the challenges of current analytical
methods, widening consideration of HA and its varied functions in basic biology and disease.
项目概要
透明质酸(或透明质酸,HA)是体内普遍存在的生物分子,具有多种作用:
调节关键的免疫调节功能,作为滑液的主要润滑成分
(SF)在关节中。因此,准确而全面的分子表征对于
提高我们对广泛的生物过程和疾病状态的理解,并且可能
转化诊断中的潜在下游应用。然而,目前评估 HA 的技术
有很大的局限性。例如,酶联免疫吸附测定 (ELISA) 等技术
擅长定量 HA,但忽略了影响 HA 分子量的关键结构-功能关系
(MW) 其作用的一个决定性特征。能够解决 HA MW 问题的方法面临以下挑战:
包括有限的动态范围(质谱)和大样品质量要求(凝胶电泳),
并且通常缺乏确定浓度的能力,需要多种技术来完成
评估。为了解决这一差距,我们建议采用固态(SS-)纳米孔来实现稳健的分子
分析。在 SS 纳米孔测量中,带电生物分子通过
合成的纳米级孔径。每个人都会产生当前的签名或“事件”
可以测量和解释易位以表示有关线程分子的特征,
包括兆瓦。此外,这些事件的总体发生率与分子浓度成正比,从而提供了
定量溶液中分析物的方法。因此,该平台具有独特的定位来探测 HA。在
该项目的目标 1,我们将首先通过调查优化 SS-纳米孔装置的 HA 分析性能
系统地研究关键实验参数,并将我们的隔离方案扩展到也针对炎症-
专门标记了HA。然后,我们将利用我们系统的高灵敏度来分析HA
通常难以探测的生物流体。这将通过执行测量来完成
在两种疾病状态下,HA 被认为具有特别的相关性: 肾脏中的尿 HA
癌症(目标 2)以及类风湿性关节炎中的血浆和尿 HA(目标 3)。我们假设增加的
我们的 SS-纳米孔方法提供的灵敏度和定量将能够实现 HA 之间的相关性
确定丰度/大小分布和疾病进展并用于微创或非侵入性治疗
诊断。该项目将由一组研究人员进行,该团队具有独特的成功优势,
拥有 SS 纳米孔分析、分子诊断、糖生物学、统计方法、泌尿外科方面的专业知识
肿瘤学和风湿病学。由此产生的技术将解决当前分析的挑战
方法,扩大对 HA 及其在基础生物学和疾病中的各种功能的考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Roger Hall其他文献
Adam Roger Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Roger Hall', 18)}}的其他基金
Solid-state nanopores for translational analysis of hyaluronan abundance and size distribution
用于透明质酸丰度和尺寸分布平移分析的固态纳米孔
- 批准号:
10452542 - 财政年份:2020
- 资助金额:
$ 30.62万 - 项目类别:
Solid-state nanopores for translational analysis of hyaluronan abundance and size distribution
用于透明质酸丰度和尺寸分布平移分析的固态纳米孔
- 批准号:
9973615 - 财政年份:2020
- 资助金额:
$ 30.62万 - 项目类别:
Detecting diverse nucleic acid biomarkers of cancer with solid-state nanopores
利用固态纳米孔检测癌症的多种核酸生物标志物
- 批准号:
10025696 - 财政年份:2020
- 资助金额:
$ 30.62万 - 项目类别:
Solid-state nanopores for translational analysis of hyaluronan abundance and size distribution
用于透明质酸丰度和尺寸分布平移分析的固态纳米孔
- 批准号:
10693188 - 财政年份:2020
- 资助金额:
$ 30.62万 - 项目类别:
Molecular Detection of DNA Hydroxymethylation for Cancer Screening
用于癌症筛查的 DNA 羟甲基化分子检测
- 批准号:
8851166 - 财政年份:2015
- 资助金额:
$ 30.62万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 30.62万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 30.62万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 30.62万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 30.62万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 30.62万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Collaborative R&D














{{item.name}}会员




