SBIR Phase II: Evaluating the feasibility of the TotalTHM-NOW for drinking water treatment plants to improve water quality, reduce costs, and lower cancer risks

SBIR 第二阶段:评估 TotalTHM-NOW 在饮用水处理厂中改善水质、降低成本和降低癌症风险的可行性

基本信息

  • 批准号:
    10258378
  • 负责人:
  • 金额:
    $ 79.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-05 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT There is an increased risk of cancer associated with long-term exposure to drinking water disinfection by- products (DBPs). Trihalomethanes (THMs) are the most common class of DBPs formed during water chlorination. Despite the THMs being regulated for 40 years. many drinking water treatment plants (WTPs) still do not have affordable, on-site tools needed to maintain compliance. Superintendents at these WTPs may allocate more than two-thirds of their operating budget for treatment processes, with a significant portion being devoted for THM control strategies. However, without real-time THMs concentration data, WTP operators blindly adjust the treatment processes which may lead to inefficient practices and higher operating costs. While there are commercial devices for on-site THMs monitoring, they are not affordable to most WTPs. This is especially true for very small, small, and many medium sized utilities. Many of these WTP are often rural and located in economically distressed regions, but they are under the same regulations as their larger Metropolitan counterparts. The research proposed here will revolutionize water treatment by providing to all WTPs the ability for affordable, on-site process control of THMs. In Phase I, two instruments were proven to be technically feasible. The TotalTHM-NOW, where NOW refers simply to getting the results “now”, is based on proven, peer- reviewed and patented science. The THM Meter is a spin-out device of the Phase I research efforts. Both the devices are based on the same chemistry, the key difference being that the TotalTHM-NOW is a fully automated, on-line analyzer for Total THMs whereas the THM Meter is semi-automated. The TotalTHM-NOW will be targeted at the large number of mid-sized WTPs, large, and very large WTPs. Our lower-cost THM Meter will be the only device available designed specifically for all very small, small, and medium WTPs. These systems are “game- changers” with regards to price and performance for an industry that has struggled for almost a decade to meet affordable price points for on-site THMs monitoring. In Phase II, we will demonstrate the commercial feasibility of these systems. The specific aims are to reduce the instrument footprint and further optimize the TotalTHM- NOW to produce beta prototypes; to package and optimize the THM Meter; and to conduct a series of nationwide beta tests to ready the devices for industry adoption and commercialization. The TotalTHM-NOW and THM Meter will lead to better process control of THMs concentrations at the WTP, a more complete understanding of THMs formation, and thus lower THMs concentrations at the plant and in the distribution system. WTPs across the United States will have the tools they need to: (1) experience fewer THMs violations, (2) reap economic/environmental benefits through reduced energy and chemical usage, (3) achieve higher community confidence in their drinking water, and ultimately (4) lower cancer risks through reductions in THMs exposure.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Clifton Brister其他文献

Paul Clifton Brister的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Clifton Brister', 18)}}的其他基金

SBIR Phase II: Evaluating the feasibility of the TotalTHM-NOW for drinking water treatment plants to improve water quality, reduce costs, and lower cancer risks
SBIR 第二阶段:评估 TotalTHM-NOW 在饮用水处理厂中改善水质、降低成本和降低癌症风险的可行性
  • 批准号:
    10424559
  • 财政年份:
    2019
  • 资助金额:
    $ 79.04万
  • 项目类别:

相似海外基金

Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Research Grant
Resilience of pollinators in a changing world: impact of developmental environment on metabolism and energetic budgets in social and solitary bees
不断变化的世界中授粉媒介的复原力:发育环境对群居和独居蜜蜂新陈代谢和能量预算的影响
  • 批准号:
    BB/X016641/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Research Grant
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Collaborative R&D
Nutrient budgets as a tool for minimizing nitrogen and phosphorus losses from agricultural fields
养分预算作为最大限度减少农田氮磷损失的工具
  • 批准号:
    574867-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ORCC: The role of bioenergetic budgets in defining elevation limits and modeling geographic ranges of species
合作研究:ORCC:生物能预算在定义海拔限制和建模物种地理范围中的作用
  • 批准号:
    2222475
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC: The role of bioenergetic budgets in defining elevation limits and modeling geographic ranges of species
合作研究:ORCC:生物能预算在定义海拔限制和建模物种地理范围中的作用
  • 批准号:
    2222476
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Budgets, Budgets Everywhere: A Necessity for Safe Real-Time on Multicore
CNS 核心:小:预算,预算无处不在:多核安全实时的必要性
  • 批准号:
    2151829
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Standard Grant
Sea-ice Snow Microbial Communities’ Impact on Antarctic Bromocarbon Budgets and Processes
海冰雪微生物群落对南极溴碳预算和过程的影响
  • 批准号:
    2031121
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Standard Grant
The Effect of Aggressive Mitigation of non-CO2 Emissions on Global Carbon Budgets
积极减少非二氧化碳排放对全球碳预算的影响
  • 批准号:
    559571-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 79.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了