Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
基本信息
- 批准号:10265401
- 负责人:
- 金额:$ 53.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdultAffectAttenuatedAutomobile DrivingAxonAxotomyBindingBiologicalCellsChronicClinicalCommunitiesComplexCytoplasmic GranulesDataFRAP1 geneG3BP1 geneGenetic TranslationGrowthGrowth Associated Protein 43HourHumanImportinsIn VitroIndividualInjuryKnowledgeLesionLiteratureMessenger RNAMolecularMotorNatural regenerationNerveNerve RegenerationNeuraxisNeuronsNeurosciencesPathway interactionsPeptidesPeripheralPeripheral NervesPeripheral Nervous SystemPeripheral nerve injuryPermeabilityPhosphorylationPhosphotransferasesPhysiologicalPopulationProtein BiosynthesisProteinsPublishingRNARNA, Messenger, StoredRegenerative capacityRegulationReportingResearchRoleSensorySignal TransductionSolidSpecificitySpinal CordSpinal cord injuryTertiary Protein StructureTestingTherapeuticTimeTissuesTranslatingTranslational ActivationTranslationsViralWorkaxon growthaxon injuryaxon regenerationcalreticulincasein kinaseclinically relevantcohortin vivoinjuredinjury and repairinsightknock-downnerve injuryneuromechanismnovel therapeutic interventionoverexpressionprogramsprotein aggregationrecruitreinnervationrelating to nervous systemrepairedresponse to injurystress granuletool
项目摘要
Peripheral nerves spontaneously regenerate but the axon growth rate is abysmally slow, such that
complete functional reinnervation of targets is rarely achieved in humans. Axon regeneration in
the central nervous system is even worse, such that individuals with spinal cord injury (SCI)
almost invariably have permanent lose of sensory and motor functions below the level of the lesion.
There is a pressing need to accelerate axon regeneration in the peripheral nervous system and
increase axon regeneration in the central nervous system. Our research program focuses on axon
intrinsic mechanisms of regeneration. Intra-axonally synthesized proteins support axon growth in
developing neurons. We have shown that PNS neurons retain the capacity to synthesize proteins in
their axons and these proteins support growth of injured axons. Axons of cultured neurons contain
thousands of mRNAs – and several lines of evidence point to complex populations of mRNAs in CNS
axons in vivo and spinal cord axons contain mRNAs and translational machinery when encouraged to
regenerate with permissive substrates. Despite
remarkable advances since the early 2000’s, the molecular mechanisms that determine when and where
a specific mRNA is translated in axons remain largely unknown. This level of regulation is
critical for regulating axon growth capacity. We have shown that mRNAs are stored in PNS axons in
RNA-protein aggregates that contain the stress granule protein G3BP1. G3BP1 protein can drive
stress granule aggregation, and G3BP1 phosphorylation blocks stress granule assembly. Unlike the
classically defined stress granule, axonal G3PB1 protein shows aggregation in uninjured/functioning
PNS axons. These axonal G3BP1 aggregates rapidly increase after axotomy, but decrease to below
basal levels shortly thereafter with a corresponding increase in phosphorylated G3BP1. G3BP1 binds
to mRNAs in axons and attenuates their translation. We have discovered exogenous agents and
endogenous signals that trigger disassembly of axonal G3BP1 aggregates. The exogenous agents
specifically increase axonal protein synthesis and accelerate axon growth rates in vitro and in
vivo. These observations have led us to hypothesize that physiological aggregation of stress
granule proteins in axons attenuates axon growth in the injured PNS and CNS by blocking translation
of an axonal mRNA cohort. We will test this hypothesis with the following specific aims:
Aim 1 – Promotion of axon growth by inhibition of G3BP1 function.
Aim 2 – Endogenous mechanisms for axonal G3BP1 aggregate disassembly.
Aim 3 – Mechanisms driving axon growth upon disassembly of axonal G3BP1 aggregates.
Functional roles for axonal translation have now come to light and we have solid in vivo evidence
that this mechanism can be targeted to accelerate axon growth after acute peripheral nerve injury.
Completion of the proposed research will bring new insight into mechanisms for temporal regulation
of axonal mRNA translation in axon injury & regeneration and uncover new therapeutic strategies for
neural repair.
周围神经自发再生,但轴突生长速度非常慢,
在人类中很少实现靶的完全功能性神经再支配。轴突再生
中枢神经系统甚至更糟,例如患有脊髓损伤(SCI)的个体
几乎总是在病变水平以下永久丧失感觉和运动功能。
迫切需要加速周围神经系统中的轴突再生,
增加中枢神经系统的轴突再生。我们的研究项目集中在轴突
再生的内在机制。轴突内合成的蛋白质支持轴突生长,
发育中的神经元我们已经证明,PNS神经元保留了合成蛋白质的能力,
它们的轴突和这些蛋白质支持受损轴突的生长。培养神经元的轴突含有
数以千计的mRNAs -和一些证据表明,复杂的群体的mRNAs在中枢神经系统
轴突在体内和脊髓轴突含有mRNA和翻译机制时,鼓励
用允许的底物再生。尽管
自2000年代初以来取得的显着进展,决定何时何地的分子机制
在轴突中翻译的特定mRNA在很大程度上仍是未知的。这种监管水平是
对调节轴突生长能力至关重要。我们已经证明,mRNA储存在PNS轴突中,
含有应激颗粒蛋白G3 BP 1的RNA-蛋白质聚集体。G3 BP 1蛋白可以驱动
应激颗粒聚集和G3 BP 1磷酸化阻断应激颗粒组装。不像
经典定义的应激颗粒,轴突G3 PB 1蛋白在未损伤/功能性
PNS轴突。这些轴突G3 BP 1聚集体在轴突切断后迅速增加,但减少到低于
此后不久,在磷酸化的G3 BP 1中相应增加基础水平。G3 BP 1结合
轴突中的mRNA并减弱它们的翻译。我们已经发现了外源因子,
内源性信号触发轴突G3 BP 1聚集体的分解。述外源剂
特异性增加轴突蛋白质合成并加速轴突生长速率
vivo.这些观察使我们假设压力的生理聚集
轴突中的颗粒蛋白通过阻断翻译而减弱损伤的PNS和CNS中的轴突生长
一个轴突mRNA组群。我们将通过以下具体目标来检验这一假设:
目的1 -通过抑制G3 BP 1功能促进轴突生长。
目的2 -轴突G3 BP 1聚集体分解的内源性机制。
目的3 -轴突G3 BP 1聚集体分解后驱动轴突生长的机制。
轴突翻译的功能性作用现在已经显现出来,我们有坚实的体内证据
这一机制可以靶向加速急性周围神经损伤后轴突的生长。
完成拟议的研究将带来新的洞察机制的时间调节
轴突mRNA翻译在轴突损伤和再生中的作用,并发现新的治疗策略,
神经修复
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFERY L TWISS其他文献
JEFFERY L TWISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFERY L TWISS', 18)}}的其他基金
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10406395 - 财政年份:2020
- 资助金额:
$ 53.42万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10447127 - 财政年份:2020
- 资助金额:
$ 53.42万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10647839 - 财政年份:2020
- 资助金额:
$ 53.42万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10030563 - 财政年份:2020
- 资助金额:
$ 53.42万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10666545 - 财政年份:2015
- 资助金额:
$ 53.42万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10430242 - 财政年份:2015
- 资助金额:
$ 53.42万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10306001 - 财政年份:2015
- 资助金额:
$ 53.42万 - 项目类别:
Systems dynamics of intracellular communication (Spatial 2011)
细胞内通讯的系统动力学(Spatial 2011)
- 批准号:
8129400 - 财政年份:2011
- 资助金额:
$ 53.42万 - 项目类别:
KINETICS OF AXONAL PROTEIN SYNTHESIS AND RNA TRANSPORT
轴突蛋白合成和 RNA 运输的动力学
- 批准号:
8363796 - 财政年份:2011
- 资助金额:
$ 53.42万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 53.42万 - 项目类别:
Research Grant