MDACC-PREDICT
MDACC-预测
基本信息
- 批准号:10266195
- 负责人:
- 金额:$ 67.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAffectAlgorithmsBiologicalBiological AssayBiological FactorsBiological MarkersBiological ProcessBiopsyCancer EtiologyCancer ModelCancer PatientCessation of lifeCetuximabCharacteristicsChronobiologyClinicalColorectal CancerCommunity Clinical Oncology ProgramCoupledDNADataData AnalysesDevelopmentDietEpidermal Growth Factor ReceptorGene Expression ProfileGenomic approachGlutaminaseGlutamineHistologicHumanImageImaging DeviceIndividualKnowledgeLeadLigandsLocationMAP Kinase GeneMalignant NeoplasmsMeasuresMediatingMetabolismMethodsMolecularMolecular GeneticsMonoclonal AntibodiesMonoclonal Antibody TherapyMusNatureOncologyOutcomePatientsPhase I/II Clinical TrialPhenotypePositron-Emission TomographyProtocols documentationRNARadiochemistryReceptor InhibitionRefractoryRegimenReproducibilityResearchResistanceResourcesStandardizationTP53 geneTechnologyTherapeuticTracerUniversitiesUniversity of Texas M D Anderson Cancer CenterValidationVisionattenuationbasecircadianclinical imagingco-clinical trialcolon cancer patientsexperiencegenomic datagenomic predictorsimaging modalityimprovedinhibitor/antagonistirinotecanmouse modelneutralizing monoclonal antibodiesnovelpanitumumabpatient derived xenograft modelpersonalized cancer therapypre-clinicalprecision oncologypreclinical imagingpreclinical studypredicting responsequantitative imagingreconstructionresponsesubcutaneoustargeted treatmenttooltreatment optimizationtumor
项目摘要
Project Summary
This application proposes a new U24 Oncology Co-Clinical Imaging Resource entitled VU-PREDICT
(Vanderbilt University-PET imaging Resource to Enhance Delivery of Individualized Cancer Therapeutics).
Precision cancer medicine, which seeks to exploit unique cellular, molecular and genetic characteristics of
individual tumors to optimize treatment, remains a critically unmet need. Despite advances in biomarker
technologies that yield high-quality cellular and genomic data, critical gaps remain to consistently match
patients with cancer and ideal therapies. While `predictive' genomic assays based on RNA and DNA are now
commonplace, current methods largely ignore tumor phenotypes differentiable by quantitative imaging. The
overarching vision for VU-PREDICT is a suite of quantitative imaging tools that facilitate the discovery of novel,
predictive imaging-derived gene expression signatures; such signatures can be deployed by the greater
oncology community to improve the personalization of cancer treatment. The linchpin of VU-PREDICT will be
positron emission tomography (PET) imaging. The sensitive and quantitative nature of PET, coupled with the
ability to produce biologically active PET tracers, renders PET uniquely capable of both detecting tumors and
profiling their specific features. Complementary to genomic approaches, PET imaging provides a quantitative,
functional measure of tumor phenotype, and when coupled biopsy approaches, can provide a significantly
greater breadth of biological characterization.
VU-PREDICT centers on a parallel co-clinical trial of patients with advanced colorectal cancer (CRC)
and human-in-mouse PDX (patient-derived xenograft) models. CRC is a leading cause of cancer-related
deaths worldwide. Epidermal growth factor receptor (EGFR) neutralizing monoclonal antibodies (mAbs;
cetuximab, panitumumab) are approved for treatment of advanced wild-type (WT) RAS CRC. However,
durable responses to anti-EGFR mAbs occur in only 12–17% of patients. VU-PREDICT will capitalize upon a
Phase I/II clinical trial opening at Vanderbilt combining a glutaminase (GLS1) inhibitor (CB-839, Calithera),
EGFR mAb therapy (panitumumab) and irinotecan in patients with advanced and refractory WT RAS CRC. It is
anticipated that combining CB-839 with EGFR mAb therapy will resensitize refractory CRC patients with Gln-
avid tumors to EGFR blockade. VU-PREDICT will allow our development of quantitative PET imaging
measures within this trial and in related preclinical studies that may identify patients likely to respond to
combined GLS1/EGFR inhibition. We have four Specific Aims: (1) Optimize quantitative preclinical PET
imaging protocols for Gln metabolism; Implement quantitative 18F-FSPG PET (2), 11C-Acetate PET (3), and
dual-tracer 11C-Acetate/18F-FSPG PET (4) to discover predictive, imaging-derived gene expression signatures.
项目摘要
该应用程序提出了一种新的U24肿瘤学共插型成像资源,名为VU Predict
(范德比尔特大学宠物成像资源,以增强个性化癌症治疗剂的传递)。
精密癌症医学,试图利用独特的细胞,分子和遗传特征
单个肿瘤以优化治疗,仍然是一种急需的需求。尽管生物标志物的进步
产生高质量的细胞和基因组数据的技术,临界差距保持一致匹配
癌症和理想疗法的患者。而基于RNA和DNA的“预测”基因组测定现在是
普通的当前方法在很大程度上忽略了通过定量成像可区分的肿瘤表型。这
VU预测的总体视野是一系列定量成像工具,可促进新颖的发现,
预测成像衍生的基因表达特征;此类签名可以由更大的签名部署
肿瘤学界以改善癌症治疗的个性化。 VU预测的Linchpin将是
正电子发射断层扫描(PET)成像。 PET的敏感和定量性质,与
能够产生具有生物活性的宠物示踪剂的能力,使宠物独特地能够检测肿瘤和
分析他们的特定功能。互补的基因组方法,PET成像提供了定量的,
肿瘤表型的功能测量以及耦合活检方法时,可以显着提供
生物学特征的更广度。
VU预测的中心以晚期结直肠癌(CRC)患者的平行临床试验为中心
和鼠类PDX(患者衍生的Xenographic)模型。 CRC是与癌症有关的主要原因
全球死亡。表皮生长因子受体(EGFR)中和单克隆抗体(mAbs;
西妥昔单抗,panitumumab)被批准用于治疗晚期野生型(WT)RAS CRC。然而,
对抗EGFR mAb的持久反应仅在12-17%的患者中发生。 VU预测将大写
I/II期临床试验在范德比尔特(Vanderbilt
EGFR MAB治疗(Panitumumumab)和Irinotecan患有晚期和难治性WT RAS CRC的患者。这是
预计将CB-839与EGFR MAB治疗相结合将使难治性CRC患者具有GLN-
狂热的肿瘤到EGFR封锁。 VU预测将允许我们开发定量宠物成像
该试验中的措施以及相关的临床前研究,可能发现可能对患者做出反应的患者
GLS1/EGFR抑制联合。我们有四个特定的目标:(1)优化定量临床前宠物
GLN代谢的成像方案;实施定量的18F-FSPG PET(2),11c-乙酸PET(3)和
双追踪器11C-乙酸/18F-FSPG PET(4)发现预测性成像衍生的基因表达特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Kopetz其他文献
Scott Kopetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Kopetz', 18)}}的其他基金
MD Anderson Cancer Center SPORE in Gastrointestinal Cancer
MD 安德森癌症中心 SPORE 在胃肠道癌症中的应用
- 批准号:
10226083 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
MD Anderson Cancer Center SPORE in Gastrointestinal Cancer
MD 安德森癌症中心 SPORE 在胃肠道癌症中的应用
- 批准号:
10415964 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
Colorectal Cancer Molecular Subtype Assay Development and Validation
结直肠癌分子亚型检测的开发和验证
- 批准号:
10463838 - 财政年份:2018
- 资助金额:
$ 67.05万 - 项目类别:
Colorectal Cancer Molecular Subtype Assay Development and Validation
结直肠癌分子亚型检测的开发和验证
- 批准号:
9789655 - 财政年份:2018
- 资助金额:
$ 67.05万 - 项目类别:
Longitudinal therapeutic monitoring of colorectal cancer patients using exosome-based liquid biopsies
使用基于外泌体的液体活检对结直肠癌患者进行纵向治疗监测
- 批准号:
10439595 - 财政年份:2018
- 资助金额:
$ 67.05万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optical probe for continuous real-time in vivo study of brain alcohol
用于连续实时体内脑酒精研究的光学探针
- 批准号:
10527743 - 财政年份:2022
- 资助金额:
$ 67.05万 - 项目类别:
Optical probe for continuous real-time in vivo study of brain alcohol
用于连续实时体内脑酒精研究的光学探针
- 批准号:
10686202 - 财政年份:2022
- 资助金额:
$ 67.05万 - 项目类别:
Carbonic Anhydrase 5A Dysfunction in Complex V Deficiency
复合物 V 缺乏时碳酸酐酶 5A 功能障碍
- 批准号:
10215509 - 财政年份:2020
- 资助金额:
$ 67.05万 - 项目类别:
Carbonic Anhydrase 5A Dysfunction in Complex V Deficiency
复合物 V 缺乏时碳酸酐酶 5A 功能障碍
- 批准号:
10042614 - 财政年份:2020
- 资助金额:
$ 67.05万 - 项目类别: