Mummichog 3, aligning mass spectrometry data to biological networks
Mummichog 3,将质谱数据与生物网络对齐
基本信息
- 批准号:10266173
- 负责人:
- 金额:$ 46.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-06 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsBiochemicalBiologicalComputer softwareDataData AnalysesDatabasesDevelopmentDiseaseFundulus heteroclitusGenerationsGenesGenomic medicineHealthHumanIntuitionManualsMass FragmentographyMass Spectrum AnalysisMetabolicModelingNamesNatureOnline SystemsOrganismPathway interactionsPatientsPatternPerformancePhenotypePublishingSoftware ToolsStatistical AlgorithmSystemTechnologyTissuesUncertaintyVisualWorkbasecommunity based participatory researchdesigndiagnostic biomarkerempoweredexpectationimprovedinstrumentationlarge scale datametabolomicsmicrobiomenext generationnovel therapeutic interventionopen sourceprecision medicinepublic health relevancetranslational impactuser-friendlyweb based interface
项目摘要
Abstract
The mummichog software was initially published in 2013, as a computational approach to match
patterns in metabolomics data to known biochemical networks, without the requirement of upfront
metabolite identification. This approach enables rapid generation of biological hypotheses from
untargeted data, and has gained considerable popularity, which also creates urgent needs to upgrade
the software itself. This proposal aims to add a rich user interface, and better support of LC-MS, LC-
MS/MS, IMS/MS and GC-MS. Furthermore, this work will make a conceptual leap to establish a
framework of network alignment as a vehicle to interpret metabolomics data by integrating multiple
layers of information. The new development will be integrated into XCMS Online and MetaboAnalyst,
and will be made freely available as modular software tools.
摘要
mummichog软件最初于2013年发布,作为一种计算方法来匹配
将代谢组学数据中的模式与已知的生物化学网络相关联,而不需要预先
代谢物鉴定这种方法能够快速生成生物学假设,
无针对性的数据,并已获得相当大的普及,这也创造了迫切需要升级
软件本身。该提案旨在增加丰富的用户界面,更好地支持LC-MS,LC-MS,
MS/MS、IMS/MS和GC-MS,并在概念上实现了一次飞跃,
网络对齐框架作为一种工具,通过整合多种代谢组学数据来解释代谢组学数据
信息层。新的开发将整合到XCMS在线和MetaboAnalyst,
并将作为模块化软件工具免费提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuzhao Li其他文献
Shuzhao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuzhao Li', 18)}}的其他基金
Mummichog 3, aligning mass spectrometry data to biological networks
Mummichog 3,将质谱数据与生物网络对齐
- 批准号:
10222073 - 财政年份:2018
- 资助金额:
$ 46.1万 - 项目类别:
Mummichog 3, aligning mass spectrometry data to biological networks - Neutral Loss
Mummichog 3,将质谱数据与生物网络对齐 - 中性损失
- 批准号:
10397317 - 财政年份:2018
- 资助金额:
$ 46.1万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.1万 - 项目类别:
Research Grant














{{item.name}}会员




