High Accuracy Nanopore Sequencing
高精度纳米孔测序
基本信息
- 批准号:10267319
- 负责人:
- 金额:$ 31.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAntiviral AgentsAwardBiological AssayCOVID-19DNADNA SequenceDNA sequencingDrug DesignDrug TargetingEnzyme Inhibitor DrugsEnzyme KineticsEnzymesExonucleaseFundingGenomeGenomicsGrantKineticsKnowledgeMeasuresMethodsMonitorMotionMotorNational Human Genome Research InstituteNonstructural ProteinNucleic AcidsNucleotidesPharmaceutical PreparationsPhysiologicalPolymerasePositioning AttributeProteinsRNARNA-Directed RNA PolymeraseResearchResolutionSiteTechniquesTechnologyTimeViralViral GenomeVirusVirus Replicationdesigndrug candidatehelicaseimprovedin vivoinhibitor/antagonistinsightmillisecondnanoporepandemic diseaseprematurepreventremdesivirsingle moleculestemtoolviral RNA
项目摘要
This project is an expansion of the scope of our current funding which was awarded to improve nanopore
sequencing. In the course of our research to improve nanopore DNA sequencing, we have discovered and
developed a new high-resolution single-molecule tool to observe the motion of helicases and polymerases. The
tool, which we called Single-molecule Picometer Resolution Nanopore Tweezers (SPRNT), is able to reveal the
single-nucleotide steps of helicases and polymerases at unprecedented detail. These enzyme steps are so small
(~0.3 nm) and fast (~ 1 ms) that no other existing single-molecule technique can resolve such motion in real time
and at physiological conditions. The genome of the SARS-CoV-2 virus encodes for an RNA-dependent RNA
polymerase, also known as non-structural protein 12 (nsp12), and a superfamily 1B helicase, known as nonstructural protein 13 (nsp13). Both of these enzymes are essential and specific to the in vivo replication of many
viruses, making this genomic replication machinery an ideal drug target. Several drug candidates to inhibit these
enzymes exist, however, none are as effective as they need to be to stem the tide of the current pandemic. Many
questions remain about how exactly these drugs interfere with the function of nsp12 or nsp13. SPRNT provides
an opportunity to answer these questions. We aim to use SPRNT to analyze the single-molecule motion of nsp12
and nsp13 in physiological conditions and in the presence of drugs against them. The exact knowledge of the
mechanisms by which various drugs inhibit nsp12 or nsp13 will enable more rational and rapid design of effective
antiviral drugs that have the potential to stop COVID-19.
该项目是我们当前资助范围的扩展,该资助旨在改善纳米孔
测序。在我们改进纳米孔 DNA 测序的研究过程中,我们发现并
开发了一种新的高分辨率单分子工具来观察解旋酶和聚合酶的运动。这
我们称之为单分子皮米分辨率纳米孔镊子 (SPRNT) 的工具能够揭示
解旋酶和聚合酶的单核苷酸步骤的细节前所未有。这些酶的步骤是如此之小
(~0.3 nm)和快速(~ 1 ms),没有其他现有的单分子技术可以实时解决这种运动
以及在生理条件下。 SARS-CoV-2 病毒的基因组编码依赖于 RNA 的 RNA
聚合酶,也称为非结构蛋白 12 (nsp12),以及超家族 1B 解旋酶,称为非结构蛋白 13 (nsp13)。这两种酶对于许多细胞的体内复制都是必需的和特异的。
病毒,使这种基因组复制机制成为理想的药物靶点。几种抑制这些的候选药物
然而,酶是存在的,但没有一种酶能够像阻止当前大流行的浪潮那样有效。许多
这些药物究竟如何干扰 nsp12 或 nsp13 的功能仍存在疑问。 SPRNT 提供
有机会回答这些问题。我们的目标是利用SPRNT来分析nsp12的单分子运动
和 nsp13 在生理条件下和存在针对它们的药物的情况下。准确的知识
各种药物抑制 nsp12 或 nsp13 的机制将有助于更合理、更快速地设计有效的药物
有可能阻止 COVID-19 的抗病毒药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENS GUNDLACH其他文献
JENS GUNDLACH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENS GUNDLACH', 18)}}的其他基金
相似海外基金
Development of a new generation of antiviral agents that are effective against drug-resistant viruses and prevent serious illness and sequelae.
开发新一代抗病毒药物,可有效对抗耐药病毒并预防严重疾病和后遗症。
- 批准号:
23K18186 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10730692 - 财政年份:2021
- 资助金额:
$ 31.36万 - 项目类别:
Design and synthesis of nucleosides to develop antiviral agents and oligonucleotide therapeutics
设计和合成核苷以开发抗病毒药物和寡核苷酸疗法
- 批准号:
21K06459 - 财政年份:2021
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10189880 - 财政年份:2021
- 资助金额:
$ 31.36万 - 项目类别:
Computer-aided identification and synthesis of novel broad-spectrum antiviral agents
新型广谱抗病毒药物的计算机辅助鉴定和合成
- 批准号:
2404261 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Studentship
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10222540 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10669717 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Association between sedentary lifestyle and liver cancer development in hepatitis C patients treated with direct-acting antiviral agents
接受直接抗病毒药物治疗的丙型肝炎患者久坐的生活方式与肝癌发展之间的关系
- 批准号:
20K10713 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10174522 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别: