Adapting a machine learning algorithm to predict thyroid cytopathologyin LMIC
采用机器学习算法来预测 LMIC 中的甲状腺细胞病理学
基本信息
- 批准号:10269391
- 负责人:
- 金额:$ 20.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ArchivesAreaAsiansBiopsy SpecimenCellular PhoneCessation of lifeClinicalClinical TrialsClinical assessmentsCountryCytopathologyDataDiagnosisDiseaseEarly DiagnosisEquipmentFinancial costFine needle aspiration biopsyFundingFutureGoalsHealthHuman ResourcesImageImprove AccessIncidenceInstitutionInternationalIodineLaboratoriesMachine LearningMalignant NeoplasmsMalignant neoplasm of thyroidMethodsMicroscopeNoduleOperative Surgical ProceduresOutcomeOutcome MeasurePathologistPathologyPatient CarePatientsPhasePlayPopulationPreparationProbabilityProceduresProtocols documentationReportingResearchResolutionResourcesRiskRisk FactorsRoleSamplingSensitivity and SpecificityServicesSlideSpecimenStainsStressSystemTanzaniaTestingThyroid GlandThyroid NoduleTimeTrainingTriageUltrasonographyUnnecessary SurgeryVietnambaseclinical careclinical decision-makingcostcost effectivedigitalhandheld mobile deviceimprovedinterestlow and middle-income countriesmachine learning algorithmmultidisciplinaryprospectivepublic health relevancestandard of care
项目摘要
Abstract
Pathology expertise and services in low and middle income countries (LMIC) are severely inadequate and
limited. One area in which pathology is especially critical for diagnosis and clinical decision making is thyroid
related disease and cancers. The incidences of thyroid nodules and cancers have increased worldwide. A
fundamental part of the clinical assessment for thyroid nodules is ultrasound-guided fine needle aspiration biopsy
(FNAB). Unfortunately, this cytopathology expertise is scarce in LMIC and many nodules are surgically removed
for diagnosis. Since 90-95% of these nodules are without malignancy, many patients undergo unnecessary
surgery with the associated risks, financial costs, and stressing already limited resources. What is critically
needed is a means to provide cytopathology expertise to interpret thyroid FNAB in LMIC.
The overall goal of this proposal is to implement our ML approach into low resource settings to provide
accurate and timely cytopathology analysis of FNAB specimens. This R21/33 proposal focuses on MLA
adaptation using smartphones for LMIC (R21) and subsequent capacity building and implementation (R33)
through well-established LMIC research partnerships in tertiary centers in Tanzania and Vietnam. We
hypothesize that our MLA can use smartphone captured images to assess probability of malignancy in thyroid
FNAB that is comparable to trained cytopathologists.
Our Aims are: R21: Adaptation of a smartphone approach to capture cytopathology images for MLA analysis.
Archived FNAB samples used at different international institutions will be used to train and adapt the MLA with
these images. Furthermore, we would train local personnel in LMIC to image capture using this new setup. The
results from this phase will be an adapted MLA using smartphone images that has comparable sensitivity and
specificity to the original MLA. R33: Implementation of the smartphone MLA approach into LMIC clinical settings.
A prospective implementation of this approach in tertiary centers in Tanzania and Vietnam will be conducted.
FNAB samples obtained would undergo standard of care pathology assessment as well as be analyzed with the
MLA protocol. Local cytopathologist assessment will be compared with the MLA analysis. Outcome measures
include MLA assessment of slides, technical slide review and image capture, concordance with pathology
between MLA and expertise both in US and LMIC.
The expected outcome will lead to a cost-effective method to implement MLA for thyroid FNAB that can be used
in LMIC. This approach will not only assist in early diagnosis of thyroid cancers but also improve the utilization
of limited resources through effectively identifying those that need surgery from those that do not.
摘要
低收入和中等收入国家的病理学专业知识和服务严重不足,
有限公司病理学对诊断和临床决策尤其重要的一个领域是甲状腺
相关疾病和癌症。甲状腺结节和癌症的发病率在世界范围内增加。一
甲状腺结节临床评估的基本部分是超声引导下细针穿刺活检
(FNAB)。不幸的是,LMIC缺乏这种细胞病理学专业知识,许多结节都通过手术切除
进行诊断。由于90-95%的结节没有恶性肿瘤,许多患者接受不必要的治疗。
手术带来了相关的风险、财务成本,并对已经有限的资源造成了压力。关键是什么
需要一种方法来提供细胞病理学专业知识,以解释LMIC中的甲状腺FNAB。
该提案的总体目标是将我们的ML方法实施到低资源设置中,
FNAB标本的细胞病理学分析准确及时。本R21/33提案侧重于司法协助
利用智能手机进行适应,以实现低收入、中等收入国家(R21)以及随后的能力建设和实施(R33)
通过在坦桑尼亚和越南的高等教育中心建立良好的LMIC研究伙伴关系。我们
假设我们的MLA可以使用智能手机捕获的图像来评估甲状腺恶性肿瘤的概率
与经过培训的细胞病理学家相当的FNAB。
我们的目标是:R21:采用智能手机方法捕获细胞病理学图像进行MLA分析。
不同国际机构使用的存档FNAB样本将用于培训和调整司法协助,
这些图像。此外,我们还将培训LMIC的当地人员使用这种新设置进行图像捕获。的
该阶段的结果将是使用具有可比灵敏度的智能手机图像的适应性MLA,
原始MLA的特性。R33:在LMIC临床环境中实施智能手机MLA方法。
预计将在坦桑尼亚和越南的第三中心实施这种方法。
获得的FNAB样本将进行标准护理病理学评估,并使用
MLA协议。将当地细胞病理学家评估与MLA分析进行比较。观察指标
包括载玻片MLA评估、技术载玻片审查和图像采集、与病理学的一致性
在美国和LMIC的MLA和专业知识之间。
预期的结果将导致一种具有成本效益的方法来实施甲状腺FNAB的MLA,
在LMIC中。这种方法不仅有助于甲状腺癌的早期诊断,
通过有效地识别那些需要手术的人和那些不需要手术的人,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WALTER Tsong LEE其他文献
WALTER Tsong LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WALTER Tsong LEE', 18)}}的其他基金
RAPID System for Early Detection of Head and Neck Cancer in Low-Resource Settings
用于资源匮乏地区早期检测头颈癌的 RAPID 系统
- 批准号:
10444593 - 财政年份:2022
- 资助金额:
$ 20.2万 - 项目类别:
RAPID System for Early Detection of Head and Neck Cancer in Low-Resource Settings
用于在资源匮乏地区早期检测头颈癌的 RAPID 系统
- 批准号:
10580036 - 财政年份:2022
- 资助金额:
$ 20.2万 - 项目类别:
Adapting a machine learning algorithm to predict thyroid cytopathologyin LMIC
采用机器学习算法来预测 LMIC 中的甲状腺细胞病理学
- 批准号:
10458057 - 财政年份:2021
- 资助金额:
$ 20.2万 - 项目类别:
Partnership to establish a practice based network to assess for head and neck cancers using a low-cost portable flexible nasopharyngoscope
合作建立基于实践的网络,使用低成本便携式柔性鼻咽镜评估头颈癌
- 批准号:
10620741 - 财政年份:2019
- 资助金额:
$ 20.2万 - 项目类别:
Partnership to establish a practice based network to assess for head and neck cancers using a low-cost portable flexible nasopharyngoscope
合作建立基于实践的网络,使用低成本便携式柔性鼻咽镜评估头颈癌
- 批准号:
10405078 - 财政年份:2019
- 资助金额:
$ 20.2万 - 项目类别:
Augmenting immune responses to DC-tumor fusions using local 3rd signals
使用局部第三信号增强对 DC 肿瘤融合的免疫反应
- 批准号:
8698285 - 财政年份:2011
- 资助金额:
$ 20.2万 - 项目类别:
Augmenting immune responses to DC-tumor fusions using local 3rd signals
使用局部第三信号增强对 DC 肿瘤融合的免疫反应
- 批准号:
8312342 - 财政年份:2011
- 资助金额:
$ 20.2万 - 项目类别:
Augmenting immune responses to DC-tumor fusions using local 3rd signals
使用局部第三信号增强对 DC 肿瘤融合的免疫反应
- 批准号:
8142497 - 财政年份:2011
- 资助金额:
$ 20.2万 - 项目类别:
Augmenting immune responses to DC-tumor fusions using local 3rd signals
使用局部第三信号增强对 DC 肿瘤融合的免疫反应
- 批准号:
8402122 - 财政年份:2011
- 资助金额:
$ 20.2万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant














{{item.name}}会员




