Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
基本信息
- 批准号:10268998
- 负责人:
- 金额:$ 85.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-24 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAdjuvantAdvanced Malignant NeoplasmAdverse eventAreaBioinformaticsBrain AneurysmsCancer PatientCancer Research ProjectCaringCase StudyCharacteristicsClinicClinicalClinical InformaticsCollaborationsColorectal CancerCommunitiesCommunity Clinical Oncology ProgramCommunity of PracticeComplementComputer softwareComputerized Medical RecordComputing MethodologiesConsumptionDana-Farber Cancer InstituteDataData ScienceDecision MakingDiagnosisDiagnosticDiseaseEpigenetic ProcessEvaluationFundingGene AmplificationGeneticGenomicsGrowthHematologic NeoplasmsHepatotoxicityImmune System DiseasesInformaticsInformation RetrievalInvestigationLaboratory FindingLiteratureMalignant NeoplasmsMalignant neoplasm of ovaryManualsMeasuresMedicalMedical RecordsMethodsMethotrexateModelingMorphologyMultiple SclerosisNatural Language ProcessingNeoadjuvant TherapyNeoplasm MetastasisOncologyPathologyPatient-Focused OutcomesPatientsPhenotypePostoperative PeriodProcessPublic HealthRare DiseasesRecording of previous eventsRecordsResearchResearch PersonnelRheumatoid ArthritisSeveritiesSolidSourceStressSystemTechniquesTechnologyTestingTextTimeTimeLineTranslational ResearchTreatment ProtocolsVisualVisualizationWorkanalytical toolanticancer researchautism spectrum disorderbasecancer carecancer initiationcancer subtypescancer typechemotherapeutic agentchemotherapyclinical careclinical investigationcohortcommunity buildingcomorbiditydata streamsdesignexhaustionfollow-upindividual patientinformatics toolinformation organizationinnovationinsightinteractive toolinterestlarge cell Diffuse non-Hodgkin&aposs lymphomamalignant breast neoplasmmelanomanext generation sequencingnovelopen sourceprecision medicineprogramsresponsetooltranslational cancer researchtranslational scientisttreatment responsetumortumor behaviorunstructured datausability
项目摘要
Summary
Precise phenotype information is needed to advance translational cancer research, particularly to unravel the
effects of genetic, epigenetic, and systems changes on tumor behavior and responsiveness. Examples of
phenotypic variables in cancer include: tumor morphology (e.g. histopathologic diagnosis), co-morbid
conditions (e.g. associated immune disease), laboratory findings (e.g. gene amplification status), specific tumor
behaviors (e.g. metastasis) and response to treatment (e.g. effect of a chemotherapeutic agent on tumor).
Current models for correlating EMR data with –omics data largely ignore the clinical text, which remains one of
the most important sources of phenotype information for cancer patients. Unlocking the value of clinical text
has the potential to enable new insights about cancer initiation, progression, metastasis, and response to
treatment. We propose further collaboration to enhance the DeepPhe platform with new methods for cancer
deep phenotyping. Several aims propose investigation of biomedical information extraction where there has
been little or no previous work (e.g. clinical genomic). Visualization of extracted data, usability of the software,
and dissemination are also emphasized. A diverse set of oncology studies led by accomplished translational
investigators in Breast Cancer, Melanoma, Ovarian Cancer, Colorectal Cancer and Diffuse Large B-cell
Lymphoma will demonstrate the utility of the software. These labs will contribute phenotype variables for
extraction, test utility and usability of the software, and provide the setting for an extrinsic evaluation. The
proposed research bridges novel methods to automate cancer deep phenotype extraction from clinical text with
emerging standards in phenotype knowledge representation and NLP. This work is highly aligned with recent
calls in the scientific literature to advance scalable and robust methods of extracting and representing
phenotypes for precision medicine and translational research.
总结
需要精确的表型信息来推进转化癌症研究,特别是要解开癌症的遗传密码。
遗传、表观遗传和系统变化对肿瘤行为和反应性的影响。的实例
癌症的表型变量包括:肿瘤形态学(例如组织病理学诊断)、共病
疾病(如相关免疫疾病)、实验室检查结果(如基因扩增状态)、特定肿瘤
行为(例如转移)和对治疗的反应(例如化疗剂对肿瘤的作用)。
目前将EMR数据与组学数据相关联的模型在很大程度上忽略了临床文本,这仍然是
癌症患者表型信息的最重要来源。释放临床文本的价值
有可能使新的见解有关癌症的起始,进展,转移,和反应,
治疗我们建议进一步合作,通过新的癌症治疗方法来增强DeepPhe平台
深层表型分析有几个目标提出了生物医学信息提取的调查,其中有
很少或没有以前的工作(例如临床基因组学)。提取数据的可视化,软件的可用性,
传播也受到重视。一组由熟练的翻译领导的多样化的肿瘤学研究
乳腺癌、黑色素瘤、卵巢癌、结直肠癌和弥漫性大B细胞癌的研究者
淋巴瘤将证明该软件的实用性。这些实验室将贡献表型变量,
提取、测试软件的实用性和可用性,并提供外部评估的设置。的
提出的研究将新方法与从临床文本中自动提取癌症深度表型联系起来,
表型知识表示和NLP的新兴标准。这项工作与最近的
在科学文献中呼吁推进可扩展和强大的提取和表示方法,
用于精准医学和转化研究的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARRY S HOCHHEISER其他文献
HARRY S HOCHHEISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARRY S HOCHHEISER', 18)}}的其他基金
Cancer Deep Phenotyping from Electronic Medical Records
根据电子病历进行癌症深度表型分析
- 批准号:
10594128 - 财政年份:2022
- 资助金额:
$ 85.92万 - 项目类别:
Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
- 批准号:
10058470 - 财政年份:2020
- 资助金额:
$ 85.92万 - 项目类别:
Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
- 批准号:
10472741 - 财政年份:2020
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9378111 - 财政年份:2016
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10405725 - 财政年份:1987
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9263052 - 财政年份:1987
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9095440 - 财政年份:1987
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10208965 - 财政年份:1987
- 资助金额:
$ 85.92万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10615588 - 财政年份:1987
- 资助金额:
$ 85.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 85.92万 - 项目类别:
Research Grant