Cancer Deep Phenotyping from Electronic Medical Records
根据电子病历进行癌症深度表型分析
基本信息
- 批准号:10594128
- 负责人:
- 金额:$ 18.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced Malignant NeoplasmCancer PatientCancer Research ProjectClinicalCollaborationsColorectal CancerComputer softwareComputerized Medical RecordDataDiagnosisEpigenetic ProcessEvaluationGene AmplificationGeneticGenomicsImmune System DiseasesInformation RetrievalInvestigationLaboratory FindingLiteratureMalignant Childhood NeoplasmMalignant NeoplasmsMalignant neoplasm of ovaryMedical RecordsMethodsModelingMorphologyNeoplasm MetastasisOncologyPhenotypePublic HealthResearchResearch PersonnelSourceSystemTestingTextTranslational ResearchVisualizationWorkanticancer researchcancer initiationchemotherapeutic agentcomorbidityinformation organizationinsightlarge cell Diffuse non-Hodgkin&aposs lymphomamalignant breast neoplasmmelanomanovelprecision medicinetranslational cancer researchtranslational scientisttreatment responsetumortumor behaviorunstructured datausability
项目摘要
Summary
Precise phenotype information is needed to advance translational cancer research, particularly to unravel the
effects of genetic, epigenetic, and systems changes on tumor behavior and responsiveness. Examples of
phenotypic variables in cancer include: tumor morphology (e.g. histopathologic diagnosis), co-morbid
conditions (e.g. associated immune disease), laboratory findings (e.g. gene amplification status), specific tumor
behaviors (e.g. metastasis) and response to treatment (e.g. effect of a chemotherapeutic agent on tumor).
Current models for correlating EMR data with –omics data largely ignore the clinical text, which remains one of
the most important sources of phenotype information for cancer patients. Unlocking the value of clinical text
has the potential to enable new insights about cancer initiation, progression, metastasis, and response to
treatment. We propose further collaboration to enhance the DeepPhe platform with new methods for cancer
deep phenotyping. Several aims propose investigation of biomedical information extraction where there has
been little or no previous work (e.g. clinical genomic). Visualization of extracted data, usability of the software,
and dissemination are also emphasized. A diverse set of oncology studies led by accomplished translational
investigators in Breast Cancer, Melanoma, Ovarian Cancer, Colorectal Cancer and Diffuse Large B-cell
Lymphoma will demonstrate the utility of the software. These labs will contribute phenotype variables for
extraction, test utility and usability of the software, and provide the setting for an extrinsic evaluation. The
proposed research bridges novel methods to automate cancer deep phenotype extraction from clinical text with
emerging standards in phenotype knowledge representation and NLP. This work is highly aligned with recent
calls in the scientific literature to advance scalable and robust methods of extracting and representing
phenotypes for precision medicine and translational research.
The supplement extends DeepPhe to pediatric cancers.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARRY S HOCHHEISER其他文献
HARRY S HOCHHEISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARRY S HOCHHEISER', 18)}}的其他基金
Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
- 批准号:
10058470 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
- 批准号:
10268998 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
- 批准号:
10472741 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9378111 - 财政年份:2016
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10405725 - 财政年份:1987
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9263052 - 财政年份:1987
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
9095440 - 财政年份:1987
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10208965 - 财政年份:1987
- 资助金额:
$ 18.86万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
10615588 - 财政年份:1987
- 资助金额:
$ 18.86万 - 项目类别:
相似海外基金
Research Project 2 Proteogenomic-guided therapeutic targeting of breast cancer patient-derived xenograft metastases
研究项目 2 蛋白质基因组引导的乳腺癌患者异种移植转移的治疗靶向
- 批准号:
10733315 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
SQLE and Sterols Contribute to Racial Disparity in ER+ Breast Cancer Patient Survival
SQLE 和甾醇导致 ER 乳腺癌患者生存率的种族差异
- 批准号:
10571020 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Establishing industrial production of components that enable expanding accessibility of PET imaging to cancer patient population.
建立组件的工业化生产,使癌症患者群体能够更容易地获得 PET 成像。
- 批准号:
10698218 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Washington University PDX Development and Trial Center - Evaluation of Abemaciclib in Combination with Olaparib in Ovarian Cancer and Breast Cancer Patient-derived Xenograft Models
华盛顿大学 PDX 开发和试验中心 - Abemaciclib 联合 Olaparib 在卵巢癌和乳腺癌患者异种移植模型中的评估
- 批准号:
10582164 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10039823 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
EU-Funded
Convening a gynecologic cancer patient advisory group to adapt a digital health tool
召集妇科癌症患者咨询小组以采用数字健康工具
- 批准号:
460767 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
Miscellaneous Programs
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10038000 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
EU-Funded
Longitudinal mixed method investigation of social networks and affective states as determinants of smoking behavior among cancer patient
社会网络和情感状态作为癌症患者吸烟行为决定因素的纵向混合方法调查
- 批准号:
10513670 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10598311 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10442585 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别: