Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution

用于分析肿瘤异质性和进化的全面而强大的工具

基本信息

  • 批准号:
    10269002
  • 负责人:
  • 金额:
    $ 80.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-24 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract In recent years, precision medicine approaches based on molecular changes in an individual patient’s tumor have become a promising strategy for diagnosis and treatment of cancer. These approaches are challenged by the fact that tumors are a heterogeneous collection of cells that change over time and in response to treatment. At the DNA sequence level, changes range in scale from single-nucleotide mutations to large chromosomal rearrangements and whole-genome duplications. New DNA/RNA sequencing technologies enable measurement of this heterogeneity and provide data to infer the evolutionary history of a tumor. However, the algorithms and software necessary to analyze the complexities of tumor heterogeneity and evolution remain limited in scope. We propose to develop a comprehensive software toolkit to analyze tumor heterogeneity and tumor evolution across space, time, and genomic scale. This toolkit will be based on advanced combinatorial and statistical algorithms developed by PI over the past several years. These algorithms will be unified into a robust, computationally efficient, and statistically sound software package. This toolkit will incorporate modules for different types of tumor samples including single tumor samples, multiple tumor regions, multiple anatomical sites (e.g. primary tumor and metastasis), and multiple time points. The software will also analyze data from different sequencing approaches (whole-genome, whole-exome, and targeted sequencing) and different sequencing technologies including bulk tumor, single-cell, short-read, and long-read. The software package will be open source and will be released to run on individual computers, computing clusters, or in cloud computing environments. Extensive documentation and training will be provided to facilitate use by a wide range of users from expert bioinformaticians to clinicians. These powerful data analytic tools will enable researchers to characterize the heterogeneity within tumors with high accuracy, enabling greater precision in cancer diagnosis and treatment.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Raphael其他文献

Benjamin Raphael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Raphael', 18)}}的其他基金

Pathway, Network and Spatiotemporal Integration of Cancer Genomics Data
癌症基因组数据的路径、网络和时空整合
  • 批准号:
    10704174
  • 财政年份:
    2021
  • 资助金额:
    $ 80.42万
  • 项目类别:
Pathway, Network and Spatiotemporal Integration of Cancer Genomics Data
癌症基因组数据的路径、网络和时空整合
  • 批准号:
    10301898
  • 财政年份:
    2021
  • 资助金额:
    $ 80.42万
  • 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
  • 批准号:
    10700040
  • 财政年份:
    2020
  • 资助金额:
    $ 80.42万
  • 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
  • 批准号:
    10059032
  • 财政年份:
    2020
  • 资助金额:
    $ 80.42万
  • 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
  • 批准号:
    10677268
  • 财政年份:
    2020
  • 资助金额:
    $ 80.42万
  • 项目类别:
Pathway and Network Integration of Cancer Genomics and Clinical Data
癌症基因组学和临床数据的通路和网络整合
  • 批准号:
    9765287
  • 财政年份:
    2016
  • 资助金额:
    $ 80.42万
  • 项目类别:
Pathway and Network Integration of Cancer Genomics and Clinical Data
癌症基因组学和临床数据的通路和网络整合
  • 批准号:
    9211127
  • 财政年份:
    2016
  • 资助金额:
    $ 80.42万
  • 项目类别:
BioMedical Big Data Core
生物医学大数据核心
  • 批准号:
    8813144
  • 财政年份:
    2016
  • 资助金额:
    $ 80.42万
  • 项目类别:
Analytical Approaches to Massive Data Computation with Applications to Genomics
海量数据计算的分析方法及其在基因组学中的应用
  • 批准号:
    8825472
  • 财政年份:
    2013
  • 资助金额:
    $ 80.42万
  • 项目类别:
Computational Characterization of Genetic Heterogeneity
遗传异质性的计算表征
  • 批准号:
    8417550
  • 财政年份:
    2013
  • 资助金额:
    $ 80.42万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 80.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了