Pathway, Network and Spatiotemporal Integration of Cancer Genomics Data
癌症基因组数据的路径、网络和时空整合
基本信息
- 批准号:10301898
- 负责人:
- 金额:$ 33.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiologicalCancer PatientCancerousCellsClinicalCloud ComputingCodeCollectionCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesDevelopmentDrug resistanceEpigenetic ProcessEvolutionGene ExpressionGenomeGenome Data Analysis CenterGenome Data Analysis NetworkGenomicsInternationalInterventionKnowledgeMalignant NeoplasmsMeasurementMolecularMutationNeoplasm MetastasisNormal CellNucleotidesOutcomePathway AnalysisPathway interactionsPatientsPhenotypePhylogenyProteinsResearchSignal TransductionTechnologyThe Cancer Genome AtlasTimeTranslationsUntranslated RNAWorkanalysis pipelinecancer cellcancer diagnosiscancer genomecancer genomicscancer therapycancer typecell stromacell typeclinical phenotypeclinical predictorscohortdata integrationepigenetic profilingepigenomicsexceptional respondersexome sequencingexperiencegenome sequencinggenomic dataneoplastic cellnovelnovel strategiesnovel therapeuticsopen sourceresponsesingle cell sequencingspatiotemporaltranscriptometranscriptomicstreatment strategytumortumor growthtumor heterogeneitytumor microenvironmenttumor progressionwhole genome
项目摘要
PROJECT SUMMARY
Cancer sequencing projects have demonstrated that tumors are tremendously heterogeneous,
reflecting the large diversity of perturbations in the cellular machinery that promote tumor growth
and metastasis. Tumors from different patients with the same type of cancer have a diverse
collection of genomic, epigenomic, and transcriptomic aberrations. Moreover, a tumor from a
single patient is a mixture of cell types including normal cells, stroma, and multiple subpopulations
of cancerous cells. We propose a Genome Data Analysis Center (GDAC) that will develop and
apply novel computational approaches to address the challenges of inter-tumor and intra-tumor
heterogeneity. This GDAC will integrate data from multiple genome characterization platforms,
multiple sequencing technologies -- including bulk, single-cell, and spatial sequencing
technologies – and leverage prior knowledge of pathways and interaction networks to explain
clinical phenotypes and inform treatment strategies. The GDAC will perform pathway and network
integration of genome characterization data, spatial analysis of tumor microenvironment, and
temporal analysis of intra-tumor heterogeneity, tumor evolution, and network rewiring. These
analyses will enable more precise translation of cancer genome characterization efforts into
clinical utility for a larger fraction of cancer patients. The GDAC will continue the ongoing
contributions of the PIs to the current Genome Data Analysis Network (GDAN) and previous
efforts in The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) projects.
项目摘要
癌症测序项目已经证明,肿瘤是非常异质的,
这反映了促进肿瘤生长的细胞机制中的扰动的巨大多样性
和转移。来自同一类型癌症的不同患者的肿瘤具有不同的
基因组、表观基因组和转录组畸变的集合。此外,一个肿瘤从一个
单个患者是包括正常细胞、基质和多个亚群的细胞类型的混合物
癌细胞。我们建议建立一个基因组数据分析中心(GDAC),
应用新的计算方法来解决肿瘤间和肿瘤内的挑战
异质性该GDAC将整合来自多个基因组表征平台的数据,
多种测序技术--包括批量、单细胞和空间测序
技术-并利用路径和相互作用网络的先验知识来解释
临床表型和告知治疗策略。GDAC将执行路径和网络
基因组表征数据的整合,肿瘤微环境的空间分析,
肿瘤内异质性、肿瘤演变和网络重新布线的时间分析。这些
分析将使癌症基因组表征工作能够更精确地转化为
临床实用性为更大比例的癌症患者。GDAC将继续进行
PI对当前基因组数据分析网络(GDAN)和以前的基因组数据分析网络(GDAN)的贡献
癌症基因组图谱(TCGA)和国际癌症基因组联盟(International Cancer Genome Consortium)
(ICGC)项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Raphael其他文献
Benjamin Raphael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Raphael', 18)}}的其他基金
Pathway, Network and Spatiotemporal Integration of Cancer Genomics Data
癌症基因组数据的路径、网络和时空整合
- 批准号:
10704174 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
- 批准号:
10269002 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
- 批准号:
10700040 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
- 批准号:
10059032 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Comprehensive and Robust Tools for Analysis of Tumor Heterogeneity and Evolution
用于分析肿瘤异质性和进化的全面而强大的工具
- 批准号:
10677268 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Pathway and Network Integration of Cancer Genomics and Clinical Data
癌症基因组学和临床数据的通路和网络整合
- 批准号:
9765287 - 财政年份:2016
- 资助金额:
$ 33.81万 - 项目类别:
Pathway and Network Integration of Cancer Genomics and Clinical Data
癌症基因组学和临床数据的通路和网络整合
- 批准号:
9211127 - 财政年份:2016
- 资助金额:
$ 33.81万 - 项目类别:
Analytical Approaches to Massive Data Computation with Applications to Genomics
海量数据计算的分析方法及其在基因组学中的应用
- 批准号:
8825472 - 财政年份:2013
- 资助金额:
$ 33.81万 - 项目类别:
Computational Characterization of Genetic Heterogeneity
遗传异质性的计算表征
- 批准号:
8417550 - 财政年份:2013
- 资助金额:
$ 33.81万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 33.81万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 33.81万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 33.81万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 33.81万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 33.81万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 33.81万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 33.81万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant