Collaborative Research: Spatiotemporal Learning in Communicating Cell Populations
合作研究:交流细胞群的时空学习
基本信息
- 批准号:10269047
- 负责人:
- 金额:$ 25.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multicellular coordination is essential in biology and is often achieved by division of labor, with some cells acting as “leaders” and others as “followers” in an information-processing task. However, in many systems it is unclear whether leaders are preselected, or whether they instead emerge in response to an environmental challenge. In the case of emergent leadership, it is poorly understood how heterogeneity and cell-to-cell coupling cause leaders to emerge, and whether their role as leaders is learned over time. Here we propose to investigate the phenomenon of emergent leadership using a novel combination of excitable dynamics, Hebbian learning, and percolation theory, and to test our predictions using custom microfluidic experiments on monolayers of neural cells. The overarching goal is to obtain a generic understanding of the behavior of coordinated, excitable systems in which heterogeneity and plasticity play a driving role. We will achieve this goal via three aims: (1) utilize our mathematical model and experiments to determine the mechanism by which leader cells (early responders) emerge in the community, (2) test competing hypotheses for the learning of leader/follower identity upon repeated stimulation, and (3) generate co-cultures with hyperactive and communication-deficient cells to investigate leader-driven information transfer. We take the view that, just as mathematical modeling can help explain biological data, biological experiments can also inspire new mathematical ideas, so long as the two are coupled via quantitative measurements and falsifiable predictions. Because many-body excitable systems are found across cell biology, we expect our results to have broad implications, particularly at the interface of the mathematical and biomedical sciences.
多细胞协调在生物学中是必不可少的,通常通过劳动分工来实现,在信息处理任务中,一些细胞充当“领导者”,另一些细胞充当“追随者”。然而,在许多系统中,并不清楚领导者是预先选定的,还是为了应对环境挑战而出现的。在领导力涌现的案例中,人们对异质性和细胞间耦合如何导致领导者涌现以及他们作为领导者的角色是否是随着时间的推移而习得的知之甚少。在这里,我们建议调查的现象,紧急的领导使用一种新的组合,兴奋的动力学,赫布学习和渗流理论,并测试我们的预测使用自定义的微流体实验单层神经细胞。总体目标是获得一个协调的,可兴奋的系统,其中异质性和可塑性起着驱动作用的行为的一般理解。我们将通过三个目标来实现这一目标:(1)利用我们的数学模型和实验来确定领导细胞(早期反应者)在社区中出现的机制,(2)测试重复刺激下学习领导者/追随者身份的竞争假设,以及(3)与过度活跃和沟通缺陷的细胞共培养,以研究领导者驱动的信息传递。我们认为,正如数学建模可以帮助解释生物数据一样,生物实验也可以激发新的数学思想,只要两者通过定量测量和可证伪的预测结合起来。由于多体可兴奋系统在细胞生物学中被发现,我们希望我们的结果具有广泛的影响,特别是在数学和生物医学科学的界面上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Mugler其他文献
Andrew Mugler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Mugler', 18)}}的其他基金
Collaborative Research: Spatiotemporal Learning in Communicating Cell Populations
合作研究:交流细胞群的时空学习
- 批准号:
10470227 - 财政年份:2020
- 资助金额:
$ 25.09万 - 项目类别:
相似海外基金
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Facilitating Teacher Learning with Video Clips of Instruction in Science
通过科学教学视频片段促进教师学习
- 批准号:
2319933 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329273 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
The Effects of Vocabulary Learning Strategy Instruction on Students' Vocabulary Development
词汇学习策略教学对学生词汇发展的影响
- 批准号:
23K12248 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Learning Map Framework to Align Instruction and Improve Student Learning in STEM Course Sequences
学习地图框架可协调 STEM 课程序列中的教学并改善学生的学习
- 批准号:
2315492 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
- 批准号:
2327708 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329274 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
Transforming Undergraduate Mathematics Education Through Faculty Development in Active Learning and Equity-Minded Instruction
通过主动学习和公平教学中的教师发展来改变本科数学教育
- 批准号:
2142122 - 财政年份:2022
- 资助金额:
$ 25.09万 - 项目类别:
Standard Grant
Development of a comprehensive support model for early screening and effective instruction of English for children with learning disabilities
开发针对学习障碍儿童的早期筛查和有效英语教学的综合支持模式
- 批准号:
22K02756 - 财政年份:2022
- 资助金额:
$ 25.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)