Intracranial cortical network connectivity underlying complexity changes during anesthetic emergence
麻醉苏醒期间颅内皮质网络连接的复杂性变化
基本信息
- 批准号:10267719
- 负责人:
- 金额:$ 0.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2021-11-03
- 项目状态:已结题
- 来源:
- 关键词:Anesthesia proceduresAnestheticsAnteriorAreaAwardAwarenessBrainBrain regionClinicalCognitiveComputer AnalysisConsciousData CollectionData SetDatabasesDeliriumDevelopmentDimensionsDiscriminationElderlyElectrodesElectroencephalographyElectrophysiology (science)EnsureEntropyEpilepsyExposure toGeneral AnesthesiaGenerationsGoalsGrantHuman VolunteersImplantation procedureImplanted ElectrodesKnowledgeLeadLearningLegal patentLinkMapsMarshalMeasuresModalityMonitorNonlinear DynamicsOperative Surgical ProceduresOutcomePatient MonitoringPatientsPerioperativePhasePhysiciansPopulationPost-Traumatic Stress DisordersPostdoctoral FellowPropertyProtocols documentationQualifyingRecoveryRiskScalp structureScientistSeizuresSignal TransductionSiteStructureSystemTechniquesTestingTrainingTranslatingUnited StatesValidationWorkbehavioral responsecareerclinically relevantcognitive recoverycomputerized toolsexperienceimplantationimprovedindexingneural networkneurocognitive disorderpatient populationpost-traumatic stresspredict clinical outcomeprospectivepsychological outcomesrelating to nervous systemskillstool
项目摘要
PROJECT SUMMARY
Each year 23 million people in the United States require anesthesia for surgery; however, it is up to the
anesthesiologist’s expertise monitoring anesthetic depth to ensure patients are adequately anesthetized. Lack
of appropriate monitoring results in patients receiving either too little anesthesia (which causes poor
psychological outcomes and post-traumatic stress disorder), or too much anesthesia (which causes poor
cognitive outcomes such as perioperative neurocognitive disorders). Though direct measures of brain activity
from noninvasive scalp electrodes using electroencephalography (EEG) improve intraoperative depth of
anesthesia monitoring, much of this work takes place in healthy human volunteers receiving easy-to-monitor
anesthetic agents, and thus is not universally applicable.
EEG complexity measures (derived from nonlinear dynamics) yield superior prediction of anesthetic depth in
traditionally hard-to-monitor surgical patients, as well as in patients receiving hard-to-monitor anesthetic
agents. A knowledge gap in the field is the extent to which these measures capture loss of information flow in
the brain, which is a critical network feature underlying conscious experience. In order to establish a link
between complexity measures and the underlying cortical dynamics, activity from scalp EEG as well as
intracranial EEG (iEEG) needs to be capture simultaneously.
In this proposal, both scalp EEG and iEEG signals will be recorded from epileptic patients exposed to
anesthesia who are undergoing iEEG implantation for clinical purposes. The Aims in this grant will support the
testing and validation of sophisticated new measures for anesthetic depth monitoring. Specifically the goals of
this proposal are to: (1) validate whether the EEG complexity changes occur in iEEG signals during emergence
from anesthesia (and to map the topology of complexity changes), (2) identify the cortical connectivity and
efficiency dynamics that underlie complexity changes (using standard functional connectivity tools applied to
iEEG signals) and (3) translate and optimize the clinical utility of these measures using scalp EEG in a different
patient population (geriatric patients at risk for perioperative neurocognitive disorders). Collectively, the results
will provide the necessary steps to build a new generation of sophisticated, easily-implemented, and accurate
EEG monitoring for anesthetic depth. A better understanding of the brain dynamics during anesthesia
administration will ultimately help physicians better monitor patient anesthetic depth to reduce poor outcomes.
This career developmental award will add clinical and translational hands-on data collection and training for Dr.
Sarah Eagleman. Additionally, Dr. Eagleman will gain experience working with a new electrophysiology
modality (multichannel iEEG) as well as learn the computational tools to analyze datasets with multiple
channels to prepare her for her transition to an independent scientist.
项目总结
美国每年有2300万人需要麻醉才能做手术;然而,这取决于
麻醉师的专业技术监测麻醉深度,以确保患者充分麻醉。缺欠
适当的监测结果导致患者接受的麻醉太少(这导致较差
心理结果和创伤后应激障碍),或麻醉过多(这会导致不良反应
认知结果,如围手术期神经认知障碍)。通过直接测量大脑活动
使用脑电(EEG)从无创性头皮电极改良术中深度
麻醉监测,这项工作的大部分是在健康的人类志愿者身上进行的,接受易于监测的
麻醉剂,因此不是普遍适用的。
脑电复杂性测量(源于非线性动力学)对麻醉深度的预测效果更好
传统上难以监测的外科患者,以及接受难以监测的麻醉剂的患者
探员们。该领域的知识缺口是指这些措施在多大程度上捕获信息流在
大脑,这是潜藏在意识体验之下的关键网络功能。为了建立一条链接
在复杂性测量和潜在的皮质动力学之间,头皮EEG的活动以及
需要同时采集颅内脑电(IEEG)。
在这项提议中,头皮脑电和iEEG信号将被记录来自暴露于
临床上正在接受iEEG植入的麻醉人员。这笔赠款的目标将支持
麻醉深度监测复杂新措施的测试和验证。具体地说,
本研究的目的是:(1)验证iEEG信号在紧急情况下是否发生了脑电复杂性的变化
从麻醉(并绘制复杂性变化的拓扑图),(2)识别皮质连通性和
作为复杂性变化基础的效率动态(使用应用于
IEEG信号)和(3)使用不同的头皮EEG来翻译和优化这些措施的临床实用性
患者群体(有围手术期神经认知障碍风险的老年患者)。总而言之,结果
将提供必要的步骤来构建新一代复杂、易于实现和准确的
脑电监测麻醉深度。更好地了解麻醉过程中的脑动力学
给药最终将帮助医生更好地监测患者的麻醉深度,以减少不良结果。
这一职业发展奖将增加临床和翻译动手数据收集和培训博士。
莎拉·伊格曼。此外,伊格尔曼博士还将获得从事新电生理学工作的经验
模式(多通道iEEG)以及学习计算工具来分析具有多个
为她过渡到一名独立科学家做准备的渠道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Eagleman其他文献
Sarah Eagleman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigation of the mechanism of recovery effect of anesthetics on endothelial glycocalyx damage
麻醉药对内皮糖萼损伤恢复作用的机制探讨
- 批准号:
23K08341 - 财政年份:2023
- 资助金额:
$ 0.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of a Novel Functional Mechanism of Intravenous Anesthetics Based on the Membrane Lipid Theory and Its Application to Clinical Practice
基于膜脂理论的静脉麻醉药新作用机制的阐明及其在临床实践中的应用
- 批准号:
23K06361 - 财政年份:2023
- 资助金额:
$ 0.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Disruptions in the brain reward system through postnatal exposure to GABA agonists and anesthetics
产后接触 GABA 激动剂和麻醉剂会扰乱大脑奖励系统
- 批准号:
10657509 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Electrophysiological analysis of proarrhythmic properties of volatile anesthetics using an originally developed arrhythmogenic model
使用最初开发的致心律失常模型对挥发性麻醉药的致心律失常特性进行电生理分析
- 批准号:
22K09032 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modification of the intercellular network of immune cells in tumor microenvironment by sedatives and anesthetics.
通过镇静剂和麻醉剂改变肿瘤微环境中免疫细胞的细胞间网络。
- 批准号:
22K09083 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of astrocytes in emergence from volatile anesthetics
星形胶质细胞在挥发性麻醉剂苏醒中的作用
- 批准号:
10340339 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Disruptions in the brain reward system through postnatal exposure to GABA agonists and anesthetics
产后接触 GABA 激动剂和麻醉剂会扰乱大脑奖励系统
- 批准号:
10440005 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Mechanisms and blood-based biomarkers of intergenerational neurobehavioral effects of general anesthetics
全身麻醉药代际神经行为效应的机制和血液生物标志物
- 批准号:
10538703 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Low Neurophysiologic Resistance to Anesthetics as a Marker of Preclinical/Prodromal Alzheimer's Disease and Neurovascular Pathology, Delirium risk and Inattention
对麻醉药的神经生理学抵抗力低是临床前/前驱阿尔茨海默病和神经血管病理学、谵妄风险和注意力不集中的标志
- 批准号:
10870632 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别:
Low Neurophysiologic Resistance to Anesthetics as a Marker of Preclinical/Prodromal Alzheimer's Disease and Neurovascular Pathology, Delirium risk and Inattention
对麻醉药的神经生理学抵抗力低是临床前/前驱阿尔茨海默病和神经血管病理学、谵妄风险和注意力不集中的标志
- 批准号:
10671023 - 财政年份:2022
- 资助金额:
$ 0.55万 - 项目类别: