Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
基本信息
- 批准号:10268984
- 负责人:
- 金额:$ 142.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AmputeesAnimal ModelBRAIN initiativeBrainCaliberCell DeathChronicCicatrixClinicalCollaborationsCommunicationCommunitiesComplexCouplingDataDevelopmentDevicesDura MaterElectrodesEngineeringEquipment MalfunctionExhibitsFeedbackForeign BodiesFrequenciesGoalsHemorrhageHumanImageImplantImplantation procedureImplanted ElectrodesIncidenceIndividualInflammationLocationMagnetic Resonance ImagingManualsMarketingMechanicsMedicalMedical ResearchMethodsMicroelectrodesMotionNeocortexNeurologicNeuronsNeurosciences ResearchOperative Surgical ProceduresOutcomeParaplegiaPatient CarePenetrationPeripheral Nervous SystemPhasePolymersPropertyProprioceptionProsthesisRattusResolutionRiskSalesSensoryShapesSiliconSiteSmall Business Innovation Research GrantSpeedStructureSurfaceSystemTechnologyTestingTissuesTraumaTungstenUltrafineUltrasonicsValidationWorkbasebrain machine interfacecarbon fibercommercializationcraniumdensitydesignextracellularflexibilitygraspimplantationimprovedimproved outcomein vivoinnovationmillimeterminimally invasivemotor controlneural implantneurotransmissionnonhuman primatenovelpre-clinicalpreservationprosthesis controlrelating to nervous systemresponsesuccesstissue traumatooltwo-photonverification and validationvibration
项目摘要
This Phase II SBIR further develops and tests a system that employs ultrasonic vibration to improve the
insertion mechanics for multichannel penetrating electrode arrays. This proposal is in response to PA-18-871
BRAIN Initiative: Development, Optimization, and Validation of Novel Tools and Technologies for
Neuroscience Research – including ‘Iterative refinement of such tools and technologies with the end-user
community’. The long-term goal of Actuated Medical, Inc. is to develop technology enabling accurate
placement of penetrating neural electrode arrays at target locations with minimal tissue trauma and
displacement, ultimately paving the way for clinical use of neural implants.
Penetrating neural implants provide direct access to extracellular neural signals across the central and
peripheral nervous systems with both high temporal and spatial resolution. Unfortunately, the implantation of
neural electrode arrays, commonly comprised of numerous closely spaced shanks, applies forces to neural
tissue resulting in significant compression (dimpling), prohibiting uniform shank insertion, and increasing the
risk of trauma, bleeding and inflammation at the implant site. These issues can increase the chronic foreign
body response (FBR) leading to neural cell death, glial scaring, and device failure. Phase I demonstrated the
ability to releasably grip and deliver ultrasonic vibration to a range of commercially available implant types,
including floating-style arrays, resulting in reductions of insertion force and surface dimpling in bench studies of
up to 80-90% for most implants tested. In vivo, ultrasonic vibration significantly reduced brain surface dimpling
(~50%, p<0.01) and exhibited evidence of reduced bleeding, while preserving device function as evidenced by
post implant neural recordings. Furthermore, preliminary work suggests significant potential for the ultrasonic
vibration to improve insertion of ultrafine (8-15 µm) microwire arrays, as well as NeuroNexus’ Matrix platform
arrays, one of the most delicate and complicated commercially-available implants. This Phase II SBIR expands
use of the NeuralGlider inserter for inserting complex, fragile, and flexible penetrating neural electrode arrays
using ultrasonic vibration to reduce insertion force, brain surface dimpling, tissue damage, and bleeding. The
project uses a unique multi-institutional collaboration to obtain scientific data, supporting the benefits of the
NeuralGlider insertion technology. Phase II hypothesis: Ultrasonic micro-vibration improves insertion accuracy
and success, reduces insertion trauma, and improves recording outcomes for penetrating neural electrode
arrays. Specific Aims: Aim 1 - Evaluate implantation trauma and inflammation response through 2-photon
imaging and magnetic resonance imaging. Aim 2 - Demonstrate efficacy of NeuralGlider insertion approach
for ultra-fine, ultra-high-density electrode array designs. Aim 3 - Integrate end user feedback, design upgrades
for coupling options, and conduct Verification and Validation. Aim 4 - Demonstrate improved outcomes with
micro-vibrated insertion.
第二阶段SBIR进一步开发和测试了一个系统,该系统采用超声波振动来改善
用于多通道穿透电极阵列的插入机构。本提案是对PA-18-871的回应
BRAIN倡议:开发,优化和验证新的工具和技术,
神经科学研究-包括“与最终用户一起迭代改进这些工具和技术”
社区'。Actuated Medical,Inc.的长期目标是开发一种技术,
将穿透性神经电极阵列放置在目标位置,组织创伤最小,
最终为神经植入物的临床应用铺平了道路。
穿透性神经植入物提供了直接进入细胞外神经信号通过中央和
具有高时间和空间分辨率的外周神经系统。不幸的是,
神经电极阵列通常由许多紧密间隔的柄部组成,
组织导致显著压缩(凹陷),阻止均匀的柄插入,并增加
植入部位的创伤、出血和炎症风险。这些问题可能会增加长期的外国
身体反应(FBR)导致神经细胞死亡、神经胶质瘢痕化和装置故障。第一阶段展示了
能够可释放地夹持并将超声振动传递到一系列市售植入物类型,
包括浮动式阵列,从而减少插入力和表面凹陷的实验室研究,
对于大多数测试的植入物,高达80-90%。在体内,超声振动显着减少脑表面凹陷
(~ 50%,p<0.01),并显示出血减少的证据,同时保留器械功能,如
植入后的神经记录此外,初步工作表明,超声波的巨大潜力
振动,以改善超细(8-15 µm)微线阵列的插入,以及NeuroNexus的矩阵平台
阵列,其中一个最微妙和复杂的商业植入物。第二阶段SBIR扩展了
使用NeuralGlider插入器插入复杂、易碎和灵活的穿透性神经电极阵列
使用超声波振动来减小插入力、脑表面凹陷、组织损伤和出血。的
该项目采用独特的多机构合作来获取科学数据,支持
NeuralGlider插入技术。第二阶段假设:超声微振动提高插入精度
成功,减少插入创伤,并改善穿透神经电极的记录结果
阵具体目的:目的1 -通过双光子成像评价植入创伤和炎症反应
成像和磁共振成像。目的2 -证明NeuralGlider插入方法的有效性
用于超细、超高密度电极阵列设计。目标3 -整合最终用户反馈,设计升级
耦合选项,并进行验证和确认。目标4 -展示改善的结果,
微振动插入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maureen L. Mulvihill其他文献
Maureen L. Mulvihill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maureen L. Mulvihill', 18)}}的其他基金
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10552838 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10763996 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
ICORPs Support for Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
ICORP 支持声学植入保护系统的开发,以提高神经接口的性能和寿命
- 批准号:
10739498 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
Expansion of Engineering and Testing for 'Locally Targeted Acoustic Neuropathy Medication Delivery System for Pain Relief without Large Systemic Doses and Side Effects'
扩大“用于缓解疼痛且无大全身剂量和副作用的局部靶向听神经病药物输送系统”的工程和测试
- 批准号:
9933278 - 财政年份:2019
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10438928 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
9925224 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10708957 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Neural Implant Insertion System using Ultrasonic Vibration to Reduce Tissue Dimpling and Improve Insertion Precision of Floating Arrays in the Neocortex
使用超声波振动的神经植入物插入系统减少组织凹陷并提高新皮质中浮动阵列的插入精度
- 批准号:
9565293 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
- 批准号:
10021212 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10611153 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists