Neural Implant Insertion System using Ultrasonic Vibration to Reduce Tissue Dimpling and Improve Insertion Precision of Floating Arrays in the Neocortex
使用超声波振动的神经植入物插入系统减少组织凹陷并提高新皮质中浮动阵列的插入精度
基本信息
- 批准号:9565293
- 负责人:
- 金额:$ 37.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAmputeesAnimal ExperimentationAwardBRAIN initiativeBlood specimenBrainCell DeathChronicCicatrixCommunitiesCouplingCraniotomyCustomDevelopmentDevicesElectrodesElectronicsEngineeringEnteral FeedingEquipment MalfunctionForeign BodiesGoalsHemorrhageHumanImplantImplanted ElectrodesInflammationLegal patentManualsMedicalMedical ResearchMethodsMicroelectrodesMotionNeocortexNeuronsNeurosciencesNeurosciences ResearchParaplegiaPatient-Focused OutcomesPerformancePeripheral Nervous SystemPhasePrimatesProceduresProprioceptionProsthesisResearchResearch PersonnelResearch Project GrantsResolutionRiskRodentSalesSeriesSiteSmall Business Innovation Research GrantSocietiesSpeedSystemTechnologyTestingTissuesTransducersTraumaUltrasonicsUnited States National Institutes of HealthValidationbasebrain machine interfaceclinical applicationcommercializationdensityextracellularimplantationimprovedin vivoinnovationmeetingsmotor controlneural implantneurotransmissionnonhuman primatenovelpre-clinical researchrelating to nervous systemresponsesuccesstissue traumatoolverification and validationvibration
项目摘要
This Phase I SBIR develops and tests a system for vibrating neural implant floating arrays during insertion to
reduce insertion force, dimpling, tissue damage, and bleeding. The approach will allow precise insertion of
electrode shanks into shallow cortical layers. This proposal is in response to PAR-15-091 BRAIN Initiative:
Development, Optimization, and Validation of Novel Tools and Technologies for Neuroscience Research.
Problem to be solved: Penetrating electrode arrays provide direct access to neural signals across the central
and peripheral nervous system with high spatial resolution. Sophisticated floating array implants may
revolutionize treatment for a range of medical conditions, including prosthetic motor control and proprioception
for amputees, and brain-machine interfacing for paraplegics. Unfortunately, implantation of floating arrays,
which are commonly comprised of numerous high-density electrode shanks, applies forces to neural tissue
resulting in substantial compression (dimpling). This dimpling often prohibits uniform shank insertion, increases
trauma and bleeding at the implant site and may accentuate glial scaring, neural cell death, and device failure.
Current insertion procedures for high-density floating arrays employ high-speed and/or pneumatic insertion
systems or manual insertion, which can cause significant bleeding and tissue damage. This project develops
an Ultrasonic Precision Insertion system for Floating Arrays (UPIND-FA) to reduce insertion force, tissue
dimpling and damage, ultimately enhancing electrode placement accuracy and functionality.
Hypothesis: Ultrasonic vibration of high-density neural electrode floating arrays (FAs) will reduce dimpling to
facilitate complete insertion of all electrode shanks without requiring advancement beyond target depth
(overshoot), reduce Foreign Body Response (FBR) due to insertion trauma and improve electrode
performance, as compared to non-vibrated and/or high-speed insertion (i.e., Commercial pneumatic inserter).
Aim 1: Development of UPIND-FA for insertion of FAs, with minimized dimpling and insertion force, and easy
release. Acceptance Criteria. >70% reduction in tissue dimpling and insertion force compared to non-vibrated
insertion; improved insertion accuracy (±100 μm of target depth) of all electrode shanks at shallow depths
(<1000 μm) over a commercial insertion; <50 μm perturbation of FA body during release post-insertion. Aim 2:
Show that UPIND-FA successfully inserts floating arrays in vivo without electrode damage. Acceptance
Criteria: >70% reduction in dimpling compared to control insertion; complete insertion of all electrode shanks
without target depth overshoot; significant improvement in array performance and reduction in brain FBR
(p<0.05). Aim 3: Confirm UPIND-FA array insertion in vivo in a gyrencephalic neocortex significantly reduces
tissue damage and brain FBR over non-vibrated and the commercial insertions. Acceptance Criteria: >70%
dimpling reduction over control insertion; complete insertion of all electrode shanks without target depth
overshoot, and significant (p<0.05) reduction in brain FBR compared to the commercial pneumatic inserter.
这一阶段的SBIR开发和测试了一种用于在插入期间振动神经植入物浮动阵列的系统
减少插入力、凹陷、组织损伤和出血。该方法将允许精确插入
电极柄进入浅皮质层。这项建议是对PAR-15-091大脑倡议的回应:
神经科学研究新工具和技术的开发、优化和验证。
需要解决的问题:穿透电极阵列提供了直接访问中枢神经信号的途径
以及具有高空间分辨率的周围神经系统。复杂的浮动阵列植入物可以
对一系列医疗条件进行革命性的治疗,包括假肢运动控制和本体感觉
截肢者和截瘫患者的脑机接口。不幸的是,浮点阵列的植入,
通常由许多高密度电极柄组成,向神经组织施加力
导致大量压缩(凹陷)。这种凹陷通常会阻止均匀的小腿插入,增加
植入部位的创伤和出血,可能会加重神经胶质细胞的惊吓、神经细胞死亡和装置故障。
用于高密度浮动阵列的当前插入过程采用高速和/或气动插入
系统或手动插入,这可能会导致严重出血和组织损伤。这个项目正在开发
一种用于浮动阵列的超声精密插入系统(UPIND-FA)以减少插入力、组织
压痕和损坏,最终提高了电极放置的准确性和功能性。
假设:高密度神经电极浮动阵列(FA)的超声振动将减少凹陷
便于完全插入所有电极柄,而不需要推进到超过目标深度
(过冲),减少插入创伤引起的异物反应(FBR),改善电极
性能,与非振动和/或高速插入器(即商用气动插入器)相比。
目的1:开发用于FA插入的UPIND-FA,具有最小的凹陷和插入力,并且容易
放手。验收标准。与非振动相比,组织凹陷和插入力减少了70%
插入;改进了浅层所有电极柄的插入精度(目标深度的±100μm)
(<;1000μm)在商业插装上;<;50μm在插入后释放期间FA车身的扰动。目标2:
表明UPIND-FA在体内成功地插入了浮动阵列,而不会损坏电极。验收
标准:与对照插入相比,凹陷减少70%;完全插入所有电极柄
没有目标深度超调;阵列性能显著提高,大脑FBR降低
(P<;0.05)。目的3:证实在体内将UPIND-FA阵列植入回脑新皮质显著减少
非振动植入物和商业植入物的组织损伤和脑FBR。验收标准:>;70%
与控制插入相比减少了凹陷;完全插入所有电极柄,没有目标深度
超调,与商用气动插入器相比,大脑FBR显著降低(p<;0.05)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maureen L. Mulvihill其他文献
Maureen L. Mulvihill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maureen L. Mulvihill', 18)}}的其他基金
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10552838 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10763996 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
ICORPs Support for Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
ICORP 支持声学植入保护系统的开发,以提高神经接口的性能和寿命
- 批准号:
10739498 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Expansion of Engineering and Testing for 'Locally Targeted Acoustic Neuropathy Medication Delivery System for Pain Relief without Large Systemic Doses and Side Effects'
扩大“用于缓解疼痛且无大全身剂量和副作用的局部靶向听神经病药物输送系统”的工程和测试
- 批准号:
9933278 - 财政年份:2019
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10438928 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
9925224 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10708957 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
- 批准号:
10268984 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
- 批准号:
10021212 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10611153 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
相似海外基金
A patient-oriented research approach to studying sex differences in the prosthetic needs and priorities of lower limb amputees
以患者为导向的研究方法,用于研究下肢截肢者的假肢需求和优先事项的性别差异
- 批准号:
485115 - 财政年份:2023
- 资助金额:
$ 37.85万 - 项目类别:
Operating Grants
Developing a gene therapy product to treat pressure ulcers in lower-limb amputees
开发一种基因治疗产品来治疗下肢截肢者的压力性溃疡
- 批准号:
2888189 - 财政年份:2023
- 资助金额:
$ 37.85万 - 项目类别:
Studentship
IMPILO-AI: Intelligent Monitoring of Prosthesis conditions In LOwer limb amputees - Advancing Innovation
IMPILO-AI:智能监测下肢截肢者的假肢状况 - 推进创新
- 批准号:
10082684 - 财政年份:2023
- 资助金额:
$ 37.85万 - 项目类别:
Collaborative R&D
Development and Evaluation of a Wearable Biofeedback Gait Training System for Lower Limb Amputees
下肢截肢者可穿戴生物反馈步态训练系统的开发和评估
- 批准号:
568803-2022 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Postgraduate Scholarships - Doctoral
Engineering design optimization of a lower limb prosthesis for female single-limb transtibial amputees using a computational modelling and user-centered design approach.
使用计算建模和以用户为中心的设计方法对女性单肢跨胫截肢者的下肢假肢进行工程设计优化。
- 批准号:
569642-2022 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
- 批准号:
10707261 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
- 批准号:
10547407 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
A Low-Cost, Practical Fitness Monitor of Socket-Suspension Systems for Lower Limb Amputees
适用于下肢截肢者的低成本、实用的插座悬挂系统健康监测仪
- 批准号:
10384774 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Restoring Proprioception to Improve Balance and Gait in Lower-Limb Amputees - COVID-19 Supplement
恢复本体感觉以改善下肢截肢者的平衡和步态 - COVID-19 补充资料
- 批准号:
10619249 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Minimising bone mineral density loss in traumatic amputees: a randomised controlled feasibility trial
最大限度地减少创伤性截肢者的骨矿物质密度损失:一项随机对照可行性试验
- 批准号:
EP/X027155/1 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Fellowship