Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
基本信息
- 批准号:10242066
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2021-09-02
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBiologicalBiological ProcessBiologyCellsComplexDataDetectionDevelopmentDiseaseDropoutGenesGenetic TranscriptionGenomicsGoalsHealthcareIndividualJointsLeadLearningMalignant NeoplasmsMathematicsMeasurementMeasuresMethodsModelingOutputPatientsPlayRNARecoveryResearch PersonnelRoleTechnologybasecell typeclinical implementationcomputerized toolshigh dimensionalityinsightmathematical theorynovelnovel strategiespersonalized medicinereconstructionsingle-cell RNA sequencingstatisticstheoriestool
项目摘要
Novel single cell RNA sequencing (scRNA-seq) technologies can simultaneously measure the expression levels of all
30,000 genes over thousands to millions of individual cells. The analysis of scRNA-seq data has already led to
fundamental advances in biology, including discovery of new cell types, detection of subtle differences between
similar cells, and reconstruction of cellular developmental trajectories. Single- cell measurements involve
amplification of tiny amounts of RNA and result in extremely sparse data matrices with many zeros, While some of
these zeros are due to missing data (dropouts), others represent true biological inactivity. Yet, many scRNA-seq
imputation methods treat all observed zero entries identically, leading to imputed matrices that often overestimate
transcriptional activity. Other methods that do attempt to distinguish biological zeros from dropouts lack rigorous
theoretical guarantees. The goals of this proposal are to develop models, supporting mathematical theory, and
computational tools that explicitly take the existence of true biological zeros into account. Matrix imputation under
this constraint involves both computational challenges as well as theoretical questions in random matrix theory and
high dimensional statistics. These include rank estimation and low rank sparse matrix recovery from partially
observed data, and biclustering in the presence of dropouts and zeros, We plan to develop novel approaches based on
non-smooth continuous optimization, and derive accompanying statistical guarantees, We also plan to develop
ensemble learning approaches that cleverly combine the outputs of multiple imputation algorithms. Finally, we hope
to gain important insights regarding recovery from such data via a study of minimax rates and information lower
bounds. To address these challenges, we will build on our promising preliminary results and the joint expertise of the
investigators in spectral methods, high dimensional statistics, matrix analysis, numerical optimization, and genomics.
新的单细胞RNA测序(scRNA-seq)技术可以同时测量所有基因的表达水平。
3万个基因分布在数千到数百万个细胞中。scRNA-seq数据的分析已经导致了
生物学的基本进展,包括发现新的细胞类型,检测
相似的细胞,以及细胞发育轨迹的重建。单细胞测量包括
微量RNA的扩增并导致具有许多零的极其稀疏的数据矩阵,而一些
这些零是由于数据缺失(辍学),其他零代表真正的生物学活性。然而,许多scRNA-seq
插补方法对所有观察到的零条目进行相同处理,导致插补矩阵经常高估
转录活性其他试图区分生物零和辍学的方法缺乏严格的
理论保障。该提案的目标是开发模型,支持数学理论,
计算工具,明确考虑到真正的生物零点的存在。矩阵插补
这一约束既涉及计算挑战,也涉及随机矩阵理论中的理论问题,
高维统计这些方法包括秩估计和低秩稀疏矩阵的部分恢复
观察到的数据,并在存在辍学和零的双聚类,我们计划开发新的方法的基础上,
非光滑连续优化,并获得伴随的统计保证,我们还计划开发
集成学习方法巧妙地将多个插补算法的输出进行联合收割机组合。最后我们希望
通过对极大极小化率和信息较低的研究,
界限。为了应对这些挑战,我们将在我们富有希望的初步成果和
光谱方法,高维统计,矩阵分析,数值优化和基因组学的研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric C Chi其他文献
Eric C Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric C Chi', 18)}}的其他基金
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
- 批准号:
9902859 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Imputing Single Cell Rna Sequencing Data: Mathematical, Statistical And Computational Challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
- 批准号:
10577202 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
- 批准号:
10021696 - 财政年份:2019
- 资助金额:
-- - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual