Imputing Single Cell Rna Sequencing Data: Mathematical, Statistical And Computational Challenges

估算单细胞 RNA 测序数据:数学、统计和计算挑战

基本信息

  • 批准号:
    10577202
  • 负责人:
  • 金额:
    $ 22.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-23 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Novel single cell RNA sequencing (scRNA-seq) technologies can simultaneously measure the expression levels of all 30,000 genes over thousands to millions of individual cells. The analysis of scRNA-seq data has already led to fundamental advances in biology, including discovery of new cell types, detection of subtle differences between similar cells, and reconstruction of cellular developmental trajectories. Single- cell measurements involve amplification of tiny amounts of RNA and result in extremely sparse data matrices with many zeros, While some of these zeros are due to missing data (dropouts), others represent true biological inactivity. Yet, many scRNA-seq imputation methods treat all observed zero entries identically, leading to imputed matrices that often overestimate transcriptional activity. Other methods that do attempt to distinguish biological zeros from dropouts lack rigorous theoretical guarantees. The goals of this proposal are to develop models, supporting mathematical theory, and computational tools that explicitly take the existence of true biological zeros into account. Matrix imputation under this constraint involves both computational challenges as well as theoretical questions in random matrix theory and high dimensional statistics. These include rank estimation and low rank sparse matrix recovery from partially observed data, and biclustering in the presence of dropouts and zeros, We plan to develop novel approaches based on non-smooth continuous optimization, and derive accompanying statistical guarantees, We also plan to develop ensemble learning approaches that cleverly combine the outputs of multiple imputation algorithms. Finally, we hope to gain important insights regarding recovery from such data via a study of minimax rates and information lower bounds. To address these challenges, we will build on our promising preliminary results and the joint expertise of the investigators in spectral methods, high dimensional statistics, matrix analysis, numerical optimization, and genomics.
新的单细胞RNA测序(scRNA-seq)技术可以同时测量所有基因的表达水平。 3万个基因分布在数千到数百万个细胞中。scRNA-seq数据的分析已经导致了 生物学的基本进展,包括发现新的细胞类型,检测 相似的细胞,以及细胞发育轨迹的重建。单细胞测量包括 微量RNA的扩增并导致具有许多零的极其稀疏的数据矩阵,而一些 这些零是由于数据缺失(辍学),其他零代表真正的生物学活性。然而,许多scRNA-seq 插补方法对所有观察到的零条目进行相同处理,导致插补矩阵经常高估 转录活性其他试图区分生物零和辍学的方法缺乏严格的 理论保障。该提案的目标是开发模型,支持数学理论, 计算工具,明确考虑到真正的生物零点的存在。矩阵插补 这一约束既涉及计算挑战,也涉及随机矩阵理论中的理论问题, 高维统计这些方法包括秩估计和低秩稀疏矩阵的部分恢复 观察到的数据,并在存在辍学和零的双聚类,我们计划开发新的方法的基础上, 非光滑连续优化,并获得伴随的统计保证,我们还计划开发 集成学习方法巧妙地将多个插补算法的输出进行联合收割机组合。最后我们希望 通过对极大极小化率和信息较低的研究, 界限。为了应对这些挑战,我们将在我们富有希望的初步成果和 光谱方法,高维统计,矩阵分析,数值优化和基因组学的研究者。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Provable Convex Co-clustering of Tensors.
COBRAC: a fast implementation of convex biclustering with compression
COBRAC:压缩凸双聚类的快速实现
  • DOI:
    10.1093/bioinformatics/btab248
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Yi, Haidong;Huang, Le;Mishne, Gal;Chi, Eric C
  • 通讯作者:
    Chi, Eric C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric C Chi其他文献

Eric C Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric C Chi', 18)}}的其他基金

Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    9902859
  • 财政年份:
    2019
  • 资助金额:
    $ 22.33万
  • 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    10021696
  • 财政年份:
    2019
  • 资助金额:
    $ 22.33万
  • 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    10242066
  • 财政年份:
    2019
  • 资助金额:
    $ 22.33万
  • 项目类别:

相似国自然基金

基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
  • 批准号:
    31601181
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
  • 批准号:
    21306143
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
  • 批准号:
    EP/Y001613/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Research Grant
CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
  • 批准号:
    2339849
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Continuing Grant
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
  • 批准号:
    ES/Y010655/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Research Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
  • 批准号:
    BB/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Research Grant
Single-cell metabolite imaging of the coral-microalgal symbiosis
珊瑚-微藻共生的单细胞代谢物成像
  • 批准号:
    DE240100317
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
  • 批准号:
    24K18100
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling the meiotic single-cell transcriptomic atlas for the control of recombination.
揭示减数分裂单细胞转录组图谱以控制重组。
  • 批准号:
    BB/Y001591/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Research Grant
Probing the mechano-biology of cell-cell adhesion in a novel single cell assay
在新型单细胞测定中探讨细胞间粘附的力学生物学
  • 批准号:
    EP/Y002245/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Research Grant
配偶子致死遺伝子による染色体切断作用解明に向けたsingle-cell RNA-seq
单细胞 RNA-seq 阐明配子致死基因的染色体切断效应
  • 批准号:
    24K17877
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DryBrain: single cell-resolution molecular mechanisms ensuring tolerance of insect nervous system to complete desiccation
DryBrain:单细胞分辨率分子机制确保昆虫神经系统对完全干燥的耐受性
  • 批准号:
    23K26919
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了