Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
基本信息
- 批准号:10242031
- 负责人:
- 金额:$ 18.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBehaviorBindingClassificationComplexConsumptionDetectionDockingDrug DesignElementsFormulationFrequenciesKnowledgeLeadLearningMethodsMolecular ConformationPerformancePhasePotential EnergyProcessProteinsProtocols documentationResearchStructureTechniquesTimebaseimprovedlearning strategynovelsmall moleculethree dimensional structure
项目摘要
Protein docking is defined as predicting the three-dimensional structure of the docked complex based on
knowledge of the structure of the components. Experimental techniques for this purpose are often expensive,
time-consuming, and in some cases, not feasible; hence the need for computational docking methods. The
problem of finding the docked conformation is generally formulated as a minimization of an energy-based scoring
function. This function is composed of multiple energy terms that act in different space scales and demonstrate
multi-frequency behavior leading to an enormous number of local minima. Furthermore, the process of
docking/binding involves conformational changes to the component molecules leading to a highly complex search
space for the optimization problem. These features render the optimization problem extremely difficult.
Most state-of-the art docking protocols employ a multi-stage and multi-scale approach. They begin with a
global search of the conformational space using a simplified scoring function to identify promising areas of the
space, followed by local optimization using a more detailed and complete scoring function to remove clashes. In
the final so-called refinement stage, promising areas found in the first two stages are explored further using a
medium space-scale search to provide a set of final solutions. It has recently become evident that due to the
inaccuracy of the scoring function/energy potentials, the optimization stage outlined above invariably generates a
number of false positives at the final phase, namely1 conformations that have low score but are far from the native
conformation. This motivates the introduction in this proposal of learning methods that combine energy with
additional features in order to rank clusters of conformations at the refinement stage and improve final solutions.
The proposal has two distinct thrusts: optimization and learning. On the optimization front, the project team
in its past research has defined the docking problem as an optimization on manifolds. In this project, two novel
elements in the manifold optimization formulation are introduced that are expected to lead to significant
improvements in the performance of docking algorithms. On the learning front, using novel robust optimization
techniques, a new and more rigorous approach to robust regression, classification, and outlier detection, is
introduced in order to (i) obtain improved ranking of clusters in the refinement stage, and (ii) address the
important problem of distinguishing between binders and non-binders.
The project aims to improve the performance of computational docking used to predict whether, and if so
how, proteins interact with each other and with small molecules. Understanding and predicting protein-protein
and protein-small molecule interactions is an important component of the process of rational drug design. More
effective protein docking algorithms, therefore, is expected to lead to improving the rational drug design process.
蛋白质对接定义为基于预测对接配合物的三维结构
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator.
- DOI:10.1101/2020.05.03.20089813
- 发表时间:2020-10-01
- 期刊:
- 影响因子:4.9
- 作者:Wollenstein-Betech, Salomon;Cassandras, Christos G;Paschalidis, Ioannis Ch
- 通讯作者:Paschalidis, Ioannis Ch
Prescriptive analytics for reducing 30-day hospital readmissions after general surgery.
用于减少普通手术后 30 天再入院率的规范性分析。
- DOI:10.1371/journal.pone.0238118
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Bertsimas,Dimitris;Li,MichaelLingzhi;Paschalidis,IoannisCh;Wang,Taiyao
- 通讯作者:Wang,Taiyao
The impact of payer status on hospital admissions: evidence from an academic medical center.
- DOI:10.1186/s12913-021-06886-3
- 发表时间:2021-09-07
- 期刊:
- 影响因子:2.8
- 作者:Zhao Y;Paschalidis IC;Hu J
- 通讯作者:Hu J
Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: Hospitalizations, mortality, and the need for an ICU or ventilator
- DOI:10.1016/j.ijmedinf.2020.104258
- 发表时间:2020-10-01
- 期刊:
- 影响因子:4.9
- 作者:Wollenstein-Betech, Salomon;Cassandras, Christos G.;Paschalidis, Ioannis Ch
- 通讯作者:Paschalidis, Ioannis Ch
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions
- DOI:
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Artin Spiridonoff;Alexander Olshevsky;I. Paschalidis
- 通讯作者:Artin Spiridonoff;Alexander Olshevsky;I. Paschalidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pirooz Vakili其他文献
Pirooz Vakili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pirooz Vakili', 18)}}的其他基金
Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
- 批准号:
9903730 - 财政年份:2019
- 资助金额:
$ 18.21万 - 项目类别:
Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
- 批准号:
10021016 - 财政年份:2019
- 资助金额:
$ 18.21万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 18.21万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 18.21万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 18.21万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 18.21万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 18.21万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 18.21万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 18.21万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 18.21万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 18.21万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 18.21万 - 项目类别:
Standard Grant