Multicompartment quantification of tissue in vitro and in vivo with magnetic resonance imaging and spectroscopy

利用磁共振成像和光谱学对体外和体内组织进行多室定量

基本信息

  • 批准号:
    10252565
  • 负责人:
  • 金额:
    $ 1.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry. However, even for the simplest two-pool signal model consisting of myelin-associated and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNRs), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. We have introduced Bayesian approaches for analysis of the mcDESPOT signal model to stabilize the analysis. Given the high-dimensional nature of the mcDESPOT signal model, and, therefore the high-dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of the MWF, the Bayesian analyses introduced here use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis, we demonstrated markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. These methods are general and have been applied to mapping proteoglycan content in the human knee in vivo.
多分量驱动平衡单脉冲观察T1和T2 (mcDESPOT)已被提出作为一种快速的多分量弛缓测量方法。然而,即使对于由髓磷脂相关和非髓磷脂相关水组成的最简单的双池信号模型,用于获得MWF估计的参数空间的维数仍然很高。这使得参数估计变得困难,特别是在低至中等信噪比(SNRs)下,由于存在局部极小值和使用传统的非线性最小二乘(NLLS)进行参数确定的拟合剩余能量表面的平坦性

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Spencer其他文献

Richard Spencer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Spencer', 18)}}的其他基金

Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
  • 批准号:
    8736647
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
  • 批准号:
    8335965
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Advanced magnetic resonance imaging of the human brain in normative aging, cognitive impairment, and dementia
人类大脑在正常衰老、认知障碍和痴呆症中的先进磁共振成像
  • 批准号:
    10688802
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
  • 批准号:
    10688868
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
  • 批准号:
    7732353
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
  • 批准号:
    7964093
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
  • 批准号:
    7964089
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Anabolic Interventions in Engineered Cartilage and Degenerative Joint Disease
工程软骨和退行性关节疾病的合成代谢干预
  • 批准号:
    7964090
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Advanced magnetic resonance imaging of the human brain in normative aging, cognitive impairment, and dementia
人类大脑在正常衰老、认知障碍和痴呆症中的先进磁共振成像
  • 批准号:
    10913064
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
  • 批准号:
    7964091
  • 财政年份:
  • 资助金额:
    $ 1.63万
  • 项目类别:

相似海外基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
  • 批准号:
    574483-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.63万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210280
  • 财政年份:
    2022
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
  • 批准号:
    2206934
  • 财政年份:
    2022
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210281
  • 财政年份:
    2022
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
  • 批准号:
    2113375
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10701881
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10298072
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10473754
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了