Advanced magnetic resonance imaging of the human brain in normative aging, cognitive impairment, and dementia
人类大脑在正常衰老、认知障碍和痴呆症中的先进磁共振成像
基本信息
- 批准号:10913064
- 负责人:
- 金额:$ 11.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmyloid beta-ProteinAnoxiaBayesian AnalysisBayesian MethodBody mass indexBrainBrain imagingBrain regionCartilageCerebrovascular CirculationCholesterolClinicalCognitionCognitiveCognitive deficitsCraniocerebral TraumaData AnalysesData SetDementiaDemyelinationsDepositionDevelopmentDiffuseDiffusionDiffusion Magnetic Resonance ImagingEcho-Planar ImagingEdemaEnvironmental Risk FactorEquilibriumEvaluationExhibitsFree RadicalsFunctional disorderFundingGenotypeHealthHeterogeneityHospitalsImageImpaired cognitionImpairmentIndividualInflammationInvestigationJudgmentLaboratoriesLanguageLeast-Squares AnalysisLesionMagnetic Resonance ImagingMapsMathematicsMeasuresMemoryMethodologyMethodsModelingMorphologic artifactsMultiple SclerosisMyelinMyelin SheathNatureNoiseParameter EstimationPathway interactionsPatternPerformancePhasePhysiologic pulseProtocols documentationPublishingRecoveryRelaxationResearchRoleScanningSignal TransductionSliceSpeedStainsStructureSymptomsSystemT2 weighted imagingTechniquesTestingTherapeutic InterventionTimeToxic effectWaterWorkage relatedbiomarker developmentclinical developmentcognitive abilitycognitive functiondensityexperimental studygenetic risk factorhigh dimensionalityhuman datahuman imagingimprovedin vivo monitoringinterestmild cognitive impairmentmyelinationpre-clinicalprognosticprogression riskremyelinationresiliencetargeted treatmenttreatment responsevolunteerwhite matter
项目摘要
This work originated with our Interlaboratory Proposal "Patterns of Myelination in Mild Cognitive Impairment", initially funded in 2015 for 2016, with funding renewed for the following year, and our funded 2017 Interlaboratory proposal, entitled: "Establishing the Relationship Between Myelination Patterns and Regional Cerebral Blood Flow in Normative Aging, Mild Cognitive Impairment, and Dementia"
Mild cognitive impairment (MCI) is characterized by a progressive decline in cognitive abilities, including memory, language, and judgment. MCI increases the risk of progression to frank dementia, including Alzheimer's disease (AD). Although the majority of cases of MCI may be due to underlying AD pathology, MCI remains a heterogeneous condition. The development of non-invasive markers for MCI due to AD and, in particular, early pre-symptomatic stages of AD would provide important prognostic information and an opportunity for developing and evaluating targeted therapies. Moreover, such markers would provide important mechanistic information on the brain changes underlying impairment in memory and other cognitive functions.
Conventional magnetic resonance imaging (MRI) using transverse relaxation time (T2) and magnetization transfer (MT) have been extensively applied in the evaluation of lesions, including therapeutic response, in multiple sclerosis (MS). Increases in T2 have been interpreted as indicating localized or diffuse edema, inflammation, or demyelination, likely in combination. However, while changes of T2 and MT are often attributed to myelin alteration, they do not directly measure myelin and are influenced by other microstructural changes.
More advanced methods of myelin assessment are based on the multicomponent decomposition of the transverse (T2) decay signal. MWF correlates strongly with myelin stain, validating MWF as a measure of myelin density. However, these MR MWF analyses cannot be performed on the whole brain within clinically reasonable acquisition times due to the ill-posed nature of the signal analysis required to estimate MWF. Nevertheless, it is clear that quantification of MWF using quantitative MRI has tremendous potential for in vivo monitoring of demyelination and potential remyelination in response to therapies in MCI and, by extension, AD.
We have studied the problem of multi-component relaxation extensively in our laboratory and have made several advances in this analysis. Much of our work has centered on cartilage, but we have successfully transferred this work to brain. An important recent extension of this has been the application of sophisticated Bayesian methods for multi-parameter data analysis using multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT). This method permits whole-brain analysis at the expense of requiring analysis of a high-dimensional signal model, that is, model with several unknown parameters. However, we have specifically developed and applied Bayesian analysis methods to the mcDESPOT experiment, permitting whole-brain analysis with high-quality parameter estimates with acquisition times of only 30 - 45 minutes. Further decreases in acquisition time are possible with more advanced hardware.
We anticipate that the currently proposed study may lead to a much larger initiative in understanding the role of myelin trajectory in cognitive function, including dementia. As one important direction, these studies may help distinguish cognitively normal A positive individuals who will ultimately develop cognitive impairment from those who will maintain cognitive health, i.e. remain resilient. Indeed, MWF changes even in pre-symptomatic stages of the pathway to cognitive impairment may serve as important biomarkers for development of clinical symptoms and has the potential to greatly facilitate development of early therapeutic interventions.
We have evaluated the performance of our analytic technique applied to mcDESPOT over wide ranges of SNR and underlying input parameter values, and experimentally from MR imaging data of human brain obtained through use of different protocols reflectingdifferent noise levels. The accuracy and precision in the estimation of MWF obtained with our Bayesian Monte Carlo analysis showed substantial improvements over the currently used nonlinear least-squares methods.
All volunteers undergo the following MRI protocol on the 3T Philips MRI system at Harbor Hospital:
- MWF mapping using BMC-mcDESPOT analysis: spoiled recalled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) brain datasets obtained at eight different flip angles and a TR of 8 ms will be acquired. In order to correct for off-resonance artifacts, bSSFP datasets will be acquired with two different phase increments of 00 and 180o. Inversion-recovery SPGR (IR-SPGR) images will also be acquired to be combined with the SPGR dataset in order to correct for flip angle heterogeneity. The total acquisition time is estimated to be approximately 30 minutes for whole brain coverage. Following acquisition, 3D MWF maps will be generated using the BMC-mcDESPOT analysis as indicated above. These methods have all been developed in Dr. Spencer's group.
- Multiexponential relaxation mapping: Multi-spin-echo imaging will be used to acquire T2-weighted images at 32 echo-times increasing linearly from 9 to 288 ms, with TR fixed to 2000 ms. Through our published Bayesian analysis and conventional nonnegative least squares, MWF and transverse relaxation times maps will be generated. Results will be compared to those derived through the BMC-mcDESPOT analysis. Given the lengthy acquisition time required for this scan, only localized slices will be obtained instead of whole brain coverage.
Additional conventional, non-specific, measures of myelination will also be applied:
- Magnetization transfer (MT) mapping: two spin echo images will be obtained, with and without on-resonance saturating pre-pulses. MT maps will be generated through the calculated ratio between those two images. Given the long acquisition time required for this scan, only localized slices will be obtained instead of whole brain coverage.
- Apparent diffusion coefficient (ADC) mapping: a single-shot spin-echo echo planar imaging sequence will be used to acquire up to three diffusion-weighted images at diffusion-sensitizing b-values of 0, 500 and 1000 s/mm2, with TR fixed to 2500 ms. Given the long acquisition time required for this scan, only localized slices will be obtained instead of whole brain coverage.
EXPECTED OUTCOMES
1) We expect to obtain high-quality myelin water fraction maps from all subjects. While we have demonstrated this methodology in published work, the current proposal will provide the opportunity to test the approach in individuals across a wide range of age and cognition status.
2) We expect to obtain results that will correspond qualitatively to the conventional methods currently employed for white matter assessment, although with greatly improved speed, accuracy, and whole-brain coverage.
3) With age some myelin sheaths exhibit degenerative changes. We expect to find differences in myelin content between healthy young subjects and healthy old subjects in distinct brain regions.
4) We expect to find differences in myelin content between old subjects without cognitive impairment and old subjects with MCI in distinct brain regions. This is our principal hypothesis as detailed above.
5) We expect to determine quantitative associations between MWF and degree of cognitive impairment.
Overall, our interest is in the relationship of myelination to MCI and preclinical AD, and the relationship between local cerebral blood flow and myelin deficits. Other relationships, such as with ApeE genotype and BMI, are also under investigation.
这项工作起源于我们的实验室间提案“轻度认知障碍中的髓鞘形成模式”,最初于2015年资助2016年,并于次年续期,以及我们资助的2017年实验室间提案,题为:“建立规范衰老,轻度认知障碍和痴呆中髓鞘形成模式与区域脑血流之间的关系”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Spencer其他文献
Richard Spencer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Spencer', 18)}}的其他基金
Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
- 批准号:
8736647 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
- 批准号:
8335965 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Multicompartment quantification of tissue in vitro and in vivo with magnetic resonance imaging and spectroscopy
利用磁共振成像和光谱学对体外和体内组织进行多室定量
- 批准号:
10252565 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Advanced magnetic resonance imaging of the human brain in normative aging, cognitive impairment, and dementia
人类大脑在正常衰老、认知障碍和痴呆症中的先进磁共振成像
- 批准号:
10688802 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
- 批准号:
10688868 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
- 批准号:
7732353 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Accurate Quantification in Physiologic Phosphorus MR Spectroscopy
生理磷 MR 光谱的准确定量
- 批准号:
7964093 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
- 批准号:
7964089 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Anabolic Interventions in Engineered Cartilage and Degenerative Joint Disease
工程软骨和退行性关节疾病的合成代谢干预
- 批准号:
7964090 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
Magnetic Resonance Analysis of Connective Tissue and Muscle
结缔组织和肌肉的磁共振分析
- 批准号:
7964091 - 财政年份:
- 资助金额:
$ 11.18万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Operating Grants