Tumor targeted drug delivery nanoplatform to overcome therapy resistance glioblastoma
肿瘤靶向药物递送纳米平台克服胶质母细胞瘤治疗耐药性
基本信息
- 批准号:10558857
- 负责人:
- 金额:$ 61.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsBiodistributionBrain NeoplasmsCell LineCellsChemoresistanceChemotherapy and/or radiationClinicalClinical TrialsCytometryDataDelayed-Action PreparationsDiseaseDrug Delivery SystemsDrug FormulationsDrug KineticsDrug TargetingDrug resistanceEvaluationExcisionFormulationFutureGenerationsGlioblastomaGliomaGrowthHumanHydrogelsImmunocompetentIn SituIn VitroInjectionsInvadedLaboratoriesLeadLiposomesLocal TherapyMalignant NeoplasmsMalignant neoplasm of brainMediatingModelingMusNanotechnologyNeuropilin-1Operative Surgical ProceduresOutcomePatientsPharmaceutical PreparationsPharmacodynamicsPhenotypePre-Clinical ModelPrimary NeoplasmProcessPrognosisRadiationRadiation ToleranceRadiation therapyRecurrenceRecurrent tumorRegimenReportingResearchResistanceRoleSDZ RADSignal PathwaySolubilitySurgically-Created Resection CavitySystemSystemic TherapyTechniquesTestingTherapeuticToxic effectToxicologyUnited States National Institutes of HealthValidationVascular Endothelial Growth FactorsWaterWorkXenograft procedureblood-brain barrier crossingcancer typechemoradiationclinically relevantcomparativedigitaldrug release kineticseffective therapyefficacy evaluationefficacy testingimprovedin vivoin vivo Modelinhibitorliposomal formulationmTOR Inhibitormouse modelnanoformulationnanotechnology platformnovelpreclinical evaluationpreventradiation resistanceradioresistantrefractory cancerside effectsmall moleculestandard carestemnesstargeted deliverytargeted treatmenttemozolomidetherapeutically effectivetherapy outcometherapy resistanttranslational potentialtreatment strategytumortumor growthtumor initiationtumor-immune system interactions
项目摘要
Glioblastoma multiforme (GBM) is associated with poor prognosis due to its highly invasive and drug-resistant
phenotype. Recurrence is a common phenomenon in GBM patients due to the presence of chemo- and radio-
resistant Brain Tumor-Initiating Cells (BTICs). Consequently, current therapies including surgery followed by
radiation or chemotherapy with Temozolomide (TMZ) failed to improve patient median overall survival
emphasizing the necessity of novel treatment strategies for drug-resistant GBM. Interestingly, Neuroplin-1
(NRP1) has been shown to be implicated in the drug-resistance and stemness in multiple types of cancer.
Recently, we showed that depletion of NRP1 improved survival compared to that of vascular endothelial growth
factor (VEGF-A) depletion in mice bearing patient-derived GBM xenografts. NRP1 depletion also improved
sensitivity to TMZ and enhanced the overall survival when combined with TMZ. Our preliminary data further
showed that a proprietary tumor-targeted liposomal (TTL) formulation combining a first generation small-
molecule NRP1 inhibitor (EG00229; G in short) with Everolimus (E) provided significant survival advantage in
TMZ resistant glioma cells as compared to that of TMZ alone. However, EG00229 is poorly water soluble, and
its liposomal formulation is not stable for long term storage. Hence, we developed a new generation of small-
molecule NRP1 inhibitors (NRP1i, Ni in short) with better solubility in order to create a stable liposomal
formulation. The central hypothesis of our proposal is that NRP1i combined with everolimus in a single payload
using TTL, either as a systemic therapy or delivered locally in a hydrogel-based system, will reduce drug-
resistance and stemness and augment radiation sensitivity in GBM, leading to better therapeutic outcomes. To
validate our hypothesis, we propose three major aims. In Aim 1, we will combine the most effective NRP1i with
everolimus as a single payload in TTL formulation (TTL-ENi) for evaluating in vitro efficacy in inhibiting stemness
and drug-resistance signaling pathways and in vivo studies using multiple therapy resistance BTICs animal
models including immune-competent mice models. Further, the additive effect of radiotherapy and chemotherapy
(e.g. TMZ) in combination with the TTL-ENi will be evaluated. We will also analyze the effect of our proposed
therapy on the tumor immune microenvironment using two state-of-the-art techniques namely mass cytometry
(CyTOF) and digital spatial profiling (DSP). In Aim 2, we will assess the efficacy of the local administration of
TTL-ENi-hydrogel in a resection and recurrence model of GBM. Moreover, the additive effect of radiotherapy
and chemotherapy (e.g. TMZ) in combination with the TTL-ENi-hydrogel will be evaluated. Aim 3 will focus on
the comparative pharmacokinetics, pharmacodynamics, and preliminary toxicity studies of the most potent
formulation for future clinical trials. We expect that a successful execution of our proposed research will lead to
clinical trial in near future for a better therapeutic strategy to override the drug-resistance in GBM patients as
well as patients suffering from other drug-resistant cancers.
摘要多形性胶质母细胞瘤具有高度侵袭性和耐药性,预后不良。
表型。在GBM患者中,由于化疗和放疗的存在,复发是一种常见现象。
耐药脑肿瘤启动细胞(BTICs)。因此,目前的治疗方法包括手术,然后是
替莫唑胺(TMZ)的放疗或化疗未能提高患者的中位总生存率
强调对耐药的GBM采取新的治疗策略的必要性。有趣的是,Neuroplin-1
(Nrp1)已被证明与多种类型的癌症的耐药性和干性有关。
最近,我们发现,与血管内皮细胞生长相比,Nrp1的缺失可以提高存活率。
携带患者来源的GBM异种移植小鼠的因子(VEGF-A)耗竭。Nrp1的耗尽也有所改善
与TMZ联合应用时,患者对TMZ的敏感性增加,总体存活率提高。我们的初步数据进一步
显示了一种专有的肿瘤靶向脂质体(TTL)配方,它结合了第一代小分子-
Nrp1分子抑制剂(EG00229;简称G)与埃博利莫斯(E)联合应用可显著提高患者的生存优势
耐TMZ的胶质瘤细胞与单独使用TMZ的胶质瘤细胞相比。然而,EG00229的水溶性很差,而且
其脂质体配方不稳定,不能长期储存。因此,我们开发了新一代小型-
Nrp1分子抑制剂(简称NRP1i,Ni)具有更好的溶解性,以产生稳定的脂质体
配方。我们建议的中心假设是NRP1i与伊波利莫斯在单个有效载荷中结合
使用TTL,无论是作为一种全身疗法,还是以水凝胶为基础的系统局部传递,都将减少药物-
GbM的耐受性和干性,以及增强辐射敏感性,导致更好的治疗结果。至
验证了我们的假设,我们提出了三个主要目标。在目标1中,我们将把最有效的NRP1i与
伊维洛莫司作为TTL制剂(TTL-ENI)中的单一有效载荷评价体外抑制茎的效果
多药耐药BTICs动物体内耐药信号转导途径研究
模型包括免疫能力强的小鼠模型。此外,放疗和化疗的相加作用
(例如,TMZ)与TTL-ENI相结合将被评估。我们还将分析我们提议的
应用两种先进技术--质量细胞术治疗肿瘤免疫微环境
(CyTOF)和数字空间剖面图(DSP)。在目标2中,我们将评估地方政府对
TTL-Eni-水凝胶在基底细胞瘤切除复发模型中的应用此外,放射治疗的附加效应
以及化疗(如TMZ)与TTL-ENI水凝胶的联合使用将得到评估。目标3将重点放在
最有效药物的比较药代动力学、药效学和初步毒性研究
用于未来临床试验的配方。我们希望成功地执行我们提议的研究将导致
近期将进行临床试验,寻找更好的治疗策略,以克服GBM患者的耐药性
以及患有其他耐药癌症的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBABRATA MUKHOPADHYAY其他文献
DEBABRATA MUKHOPADHYAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBABRATA MUKHOPADHYAY', 18)}}的其他基金
Targeting Pancreatic Cancer Using Peptide Chemistry: From Bench to Bedside
使用肽化学靶向胰腺癌:从实验室到临床
- 批准号:
8433232 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Targeting Pancreatic Cancer Using Peptide Chemistry: From Bench to Bedside
使用肽化学靶向胰腺癌:从实验室到临床
- 批准号:
8056510 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Tumor Microenvironment/Angiogenesis Training Grant
肿瘤微环境/血管生成培训补助金
- 批准号:
8259210 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Targeting Pancreatic Cancer Using Peptide Chemistry: From Bench to Bedside
使用肽化学靶向胰腺癌:从实验室到临床
- 批准号:
8607838 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Tumor Microenvironment/Angiogenesis Training Grant
肿瘤微环境/血管生成培训补助金
- 批准号:
8472454 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Tumor Microenvironment/Angiogenesis Training Grant
肿瘤微环境/血管生成培训补助金
- 批准号:
8069951 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Targeting Pancreatic Cancer Using Peptide Chemistry: From Bench to Bedside
使用肽化学靶向胰腺癌:从实验室到临床
- 批准号:
8212469 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
Tumor Microenvironment/Angiogenesis Training Grant
肿瘤微环境/血管生成培训补助金
- 批准号:
7853825 - 财政年份:2010
- 资助金额:
$ 61.84万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 61.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists