Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10559479
- 负责人:
- 金额:$ 16.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-21 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAreaBioinformaticsBiometryCase StudyCodeCognitive agingCollaborationsCommunitiesComplexComputer softwareCore FacilityDataData AnalysesData CommonsData ScienceDevelopmentEnsureEnvironmental Engineering technologyEnvironmental HealthEnvironmental ScienceFAIR principlesFacultyFosteringGenerationsGeneticGenomicsGeographic Information SystemsImageInfrastructureInternetMetalsMethodologyMethodsMissionMolecularPhasePhenotypePostdoctoral FellowProceduresProtocols documentationPublic Health SchoolsQuality ControlReproducibilityResearchResearch MethodologyResearch PersonnelResource SharingResourcesScienceScientistServicesSourceSpecific qualifier valueStandardizationStatistical ComputingStatistical MethodsStatistical ModelsStrategic PlanningStudentsSuperfundSupport SystemTeacher Professional DevelopmentTestingTrainingTraining and EducationTranslatingTranslational ResearchUnited States National Institutes of HealthVisualizationWorkcommunity engagementcomputerized data processingcomputerized toolsdata infrastructuredata interoperabilitydata managementdata sharing networksdatabase of Genotypes and Phenotypesdesigngenome sciencesgenome-widegenomic datagraduate studenthigh dimensionalitymeetingsmembernext generationopen dataphenotypic datapre-doctoralprogramsquality assuranceremediationskillssoundstatisticsstudent trainingsuccess
项目摘要
SUMMARY/ ABSTRACT
The Data Management and Analysis Core (DMAC) will provide data management, biostatistical, bioinformatics,
and geographical information system (GIS) support and ensure resource sharing and reproducible science for
all four projects and all cores supported by the program. In addition to this support, core faculty and researchers
will engage in mission-related research that will develop methods to integrate high dimensional exposure,
molecular, and phenotypic data. Data management and resource sharing activities will span three tenets of
reproducibility: (1) data reproducibility, which will include data management plans and other quality assurance /
quality control procedures for all Center data, (2) analysis reproducibility, which will analysis protocols that are
pre-specified, standardized, and rigorous, and (3) result replicability, accomplished by a resource sharing plan
that meets the desired principle of data being Findable, Accessible, Interoperable, and Reusable (FAIR)
introduced in the NIH Data Science Strategic Plan. The DMAC will directly support each of the four Center
projects, help the Administrative and CEC Cores translate complex research findings obtained from cutting-edge
methodology to easily-understood and easily-visualized result summaries, and work with the RETCC to provide
training to Center faculty, students, and fellows working on Center-related projects in the areas of biostatistics,
quantitative genomics, and data science, including methods to promote reproducibility and replicability. Through
its activities, DMAC will foster and enable the interoperability of data and methods between the Center’s
biomedical and environmental science and engineering projects as well as between this Center and the broader
scientific community, accelerating the impact of the Center's research.
总结/摘要
数据管理和分析核心(DMAC)将提供数据管理,生物统计,生物信息学,
和地理信息系统(GIS)支持和确保资源共享和可复制的科学,
所有四个项目和所有核心都得到了该计划的支持。除了这些支持,核心教师和研究人员
将从事与任务相关的研究,开发整合高维曝光的方法,
分子和表型数据。数据管理和资源共享活动将涵盖以下三个原则:
再现性:(1)数据再现性,包括数据管理计划和其他质量保证;
所有中心数据的质量控制程序,(2)分析重现性,这将分析方案,
预先规定的、标准化的和严格的,以及(3)通过资源共享计划实现的结果可复制性
满足数据可查找、可扩展、可互操作和可重用(FAIR)的理想原则
这是NIH数据科学战略计划的一部分。DMAC将直接支持四个中心中的每一个
项目,帮助行政和CEC核心翻译复杂的研究成果,从尖端
方法,以易于理解和易于可视化的结果摘要,并与RETCC合作,提供
培训中心教师,学生和研究员在生物统计学领域从事中心相关项目,
定量基因组学和数据科学,包括促进再现性和可复制性的方法。通过
DMAC的活动将促进和实现数据和方法之间的互操作性中心的
生物医学和环境科学与工程项目,以及该中心和更广泛的
科学界,加速该中心的研究的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brent Andrew Coull其他文献
Brent Andrew Coull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brent Andrew Coull', 18)}}的其他基金
Methods for Data Integration and Risk Assessment for Environmental Mixtures
环境混合物的数据集成和风险评估方法
- 批准号:
10155484 - 财政年份:2018
- 资助金额:
$ 16.08万 - 项目类别:
Methods for Data Integration and Risk Assessment for Environmental Mixtures
环境混合物的数据集成和风险评估方法
- 批准号:
9440069 - 财政年份:2018
- 资助金额:
$ 16.08万 - 项目类别:
Workshop for Junior Biostatisticians in Health Research
健康研究初级生物统计学家研讨会
- 批准号:
9438955 - 财政年份:2015
- 资助金额:
$ 16.08万 - 项目类别:
Project 6: Optimizing Sampling and Statistical Analysis for Hazardous Waste Site
项目6:危废场优化采样及统计分析
- 批准号:
7932380 - 财政年份:2010
- 资助金额:
$ 16.08万 - 项目类别:
Statistical Methods for the Spatio-Temporal Assessment of Social Disparities in
社会差异时空评估的统计方法
- 批准号:
8589658 - 财政年份:2008
- 资助金额:
$ 16.08万 - 项目类别:
Analysis of High-Dimensional Environmental Health Data
高维环境健康数据分析
- 批准号:
7032301 - 财政年份:2004
- 资助金额:
$ 16.08万 - 项目类别:
Analysis of High-Dimensional Environmental Health Data
高维环境健康数据分析
- 批准号:
7647349 - 财政年份:2004
- 资助金额:
$ 16.08万 - 项目类别:
Analysis of High-Dimensional Environmental Health Data
高维环境健康数据分析
- 批准号:
6889176 - 财政年份:2004
- 资助金额:
$ 16.08万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 16.08万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 16.08万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 16.08万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 16.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 16.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 16.08万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 16.08万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 16.08万 - 项目类别:
Standard Grant