Integration of GTEx and HuBMAP data to gain population-level cell-type-specific insights
整合 GTEx 和 HuBMAP 数据以获得群体水平的细胞类型特异性见解
基本信息
- 批准号:10575440
- 负责人:
- 金额:$ 31.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AffectBioinformaticsBiologicalBlood Cell CountBrainCatalogsCell CountCell NucleusCellsCollectionCommunitiesComplexComputational algorithmComputer softwareDataData CollectionData SetDiseaseFlow CytometryFundingGene ExpressionGene Expression ProfilingGene Expression RegulationGeneral PopulationGeneticGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHealthHumanHuman BioMolecular Atlas ProgramHuman BiologyHuman GeneticsHuman bodyMapsMasksMeasuresMethodsModelingNormal tissue morphologyPilot ProjectsPopulationPublicationsQuantitative Trait LociRegulationResearchResearch DesignResolutionResourcesSelection BiasSiteSmall Nuclear RNASolidStatistical MethodsSystemTechniquesTestingTissue SampleTissue-Specific Gene ExpressionTissuesUncertaintyUnited States National Institutes of Healthcell typecostgenome sequencinggenome wide association studyhuman tissueimprovedinnovationinsightlarge scale datamultidisciplinarynovelprogramspublic databaseresponsestatisticstheoriestooltranscriptometranscriptome sequencinguser-friendlywhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
The NIH Common Fund Genotype-Tissue Expression project (GTEx) collected whole-genome sequencing and
gene expression data from 47 tissues sites of hundreds of subjects. It generated a huge impact by providing
tissue-level gene expression and expression quantitative trait loci (eQTLs) for over 7,000 publications. However,
tissues are mixtures of myriad cells, and tissue-level gene regulation is affected by cellular compositions. To
obtain cell-type-specific (CTS) effects, GTEx started to collect single-nucleus RNA-sequencing (snRNA-seq)
data from eight tissue types. The single-cell data collection is extremely expensive and labor-intensive, and thus
snRNA-seq data are only collected from 25 tissue samples of 16 donors that may not represent the population.
More cost and labor-efficient methods are urgently needed to use existing datasets fully. It turns out that with
another NIH Common Fund project, Human BioMolecular Atlas Program (HuBMAP), we can gain population-
level insights with HuBMAP single-cell data as a reference by developing computationally efficient
methods. Complementary to GTEx and other single-cell references, the HuBMAP single-cell reference
allows us to deconvolve the 47 GTEx tissues into over 200 cell types. In addition to the cellular fractions, we
will calculate CTS eQTLs for those cell types at a population scale. Specifically, we will: 1) estimate cellular
fractions of over 200 cell types from 47 tissue sites across the human body; 2) calculate CTS-eQTLs for those
hundreds of cell types with statistical rigor and power. We will further consider the potential selection bias in
the eQTL analysis that GTEx collected only normal tissues. The successful completion of this project will
maximize the usage of NIH Common Fund GTEx and HuBMAP projects to provide a new eQTL resource at
cell-type resolution. It will be powerful in downstream analyses such as CTS colocalization by connecting with
genome-wide association studies (GWAS) and CTS transcriptome-wide association studies (TWAS) by
predicting genetically regulated CTS gene expression. Altogether, this project will provide a global picture of
the human body at high resolution to map cells to health and complex diseases.
项目概要/摘要
NIH 共同基金基因型组织表达项目 (GTEx) 收集了全基因组测序和
来自数百名受试者 47 个组织位点的基因表达数据。它通过提供
超过 7,000 份出版物的组织水平基因表达和表达数量性状位点 (eQTL)。然而,
组织是无数细胞的混合物,组织水平的基因调控受到细胞组成的影响。到
获得细胞类型特异性(CTS)效应,GTEx开始收集单核RNA测序(snRNA-seq)
来自八种组织类型的数据。单细胞数据收集极其昂贵且劳动密集型,因此
snRNA-seq 数据仅从 16 名捐赠者的 25 个组织样本中收集,可能不代表总体。
迫切需要更具成本效益和劳动力效率的方法来充分利用现有数据集。事实证明,随着
另一个 NIH 共同基金项目,人类生物分子图谱计划 (HuBMAP),我们可以获得人口-
通过开发高效的计算能力,以 HuBMAP 单细胞数据作为参考来提高洞察力
方法。 HuBMAP 单细胞参考是 GTEx 和其他单细胞参考的补充
使我们能够将 47 种 GTEx 组织解卷积为 200 多种细胞类型。除了细胞部分之外,我们
将在群体规模上计算这些细胞类型的 CTS eQTL。具体来说,我们将:1)估计细胞
来自人体 47 个组织部位的 200 多种细胞类型的片段; 2) 计算那些的CTS-eQTL
数百种具有统计严谨性和功效的细胞类型。我们将进一步考虑潜在的选择偏差
GTEx仅收集正常组织的eQTL分析。该项目的顺利完成将
最大限度地利用 NIH 共同基金 GTEx 和 HuBMAP 项目,在以下位置提供新的 eQTL 资源:
细胞类型分辨率。通过连接,它将在下游分析(例如 CTS 共定位)中发挥强大作用
全基因组关联研究(GWAS)和 CTS 转录组全关联研究(TWAS)
预测基因调控的 CTS 基因表达。总而言之,该项目将提供全球概况
以高分辨率绘制人体细胞图,以绘制健康和复杂疾病的图谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiebiao Wang其他文献
Jiebiao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 31.47万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 31.47万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




